Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OptSwap optimizes microbial strain design for production-scale bioprocessing

18.09.2013
Using a new in silico method called OptSwap scientists can predict how to engineer microorganisms to increase the yield of high-value biobased chemicals produced by industrial-scale cell factories.

This example of how advanced computational tools are being applied to genome-scale metabolic modeling in microbes illustrates the important contributions from the field of Systems Biology, as highlighted in a special research section in Industrial Biotechnology, a peer-reviewed journal from Mary Ann Liebert Inc., publisher. The articles are available on the Industrial Biotechnology website.

The article "Optimizing Cofactor Specificity of Oxidoreductase Enzymes for the Generation of Microbial Production Strains—OptSwap," by Zachary King and Adam Feist, University of California, San Diego and Technical University of Denmark, Lyngby, describes the development of OptSwap. The authors identified microbial strain designs with significant advantages for the production of L-alanine, succinate, acetate, and D-lactate under the modeled conditions.

"The OptSwap method of King and Feist provides a great example of how systems approaches can enable more effective design and simulation of microbial strains," says Guest Editor Nathan D. Price, PhD, Associate Director, Institute of Systems Biology (Seattle, WA) and a member of the Industrial Biotechnology Editorial Board.

The IB IN DEPTH special section on Systems Biology includes review articles by Kieran Smallbone (University of Manchester, UK) and Pedro Mendes (Virginia Tech, Blacksburg): "Large-Scale Metabolic Models: From Reconstruction to Differential Equations"; Jacob Koskimaki, Anna Blazier, Andres Clarens, and Jason Papin (University of Virginia, Charlottesville): "Computational Models of Algae Metabolism for Industrial Applications"; Scott Harrison and Markus Herrgård (Technical University of Denmark, Hørsholm): "The Uses and Future Prospects of Metabolomics and Targeted Metabolite Profiling in Cell Factory Development"; and Manual Alberto Garcia-Albornoz and Jens Nielsen (Chalmers University of Technology, Göteborg, Sweden): "Application of Genome-Scale Metabolic Models in Metabolic Engineering."

Research articles by Hnin Aung, Susan Henry, and Larry Walker (Cornell University, Ithaca, NY): "Revising the Representation of Fatty Acid, Glycerolipid, and Glycerophospholipid Metabolism in the Consensus Model of Yeast Metabolism,"; and by Patrick Hyland and Radhakrishnan Mahadevan (University of Toronto, Canada) and Serene Lock-Sow Mun (Universiti Teknologi Petronas, Tronoh Malaysia): "Prediction of Weak Acid Toxicity in Saccharomyces cerevisiae Using Genome-Scale Metabolic Models" round out the special section.

About the Journal

Industrial Biotechnology, led by Co-Editors-in-Chief Larry Walker, PhD, Professor, Biological & Environmental Engineering, Cornell University, Ithaca, NY, and Glenn Nedwin, PhD, MoT, CEO and President, Caisson Biotech, LLC, Davis, CA, is an authoritative journal focused on biobased industrial and environmental products and processes, published bimonthly in print and online. The Journal reports on the science, business, and policy developments of the emerging global bioeconomy, including biobased production of energy and fuels, chemicals, materials, and consumer goods. The articles published include critically reviewed original research in all related sciences (biology, biochemistry, chemical and process engineering, agriculture), in addition to expert commentary on current policy, funding, markets, business, legal issues, and science trends. Industrial Biotechnology offers the premier forum bridging basic research and R&D with later-stage commercialization for sustainable biobased industrial and environmental applications.

About the Publisher

Mary Ann Liebert Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in promising areas of science and biomedical research, including Environmental Engineering Science and Sustainability: The Journal of Record. Its biotechnology trade magazine, Genetic Engineering & Biotechnology News (GEN), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert Inc., publishers website.

Mary Ann Liebert, Inc. 140 Huguenot St., New Rochelle, NY 10801-5215 http://www.liebertpub.com Phone: (914) 740-2100 (800) M-LIEBERT Fax: (914) 740

Vicki Cohn | EurekAlert!
Further information:
http://www.liebertpub.com

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>