Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optogenetic tool elucidated: RUB researchers explain channelrhodopsin

28.02.2012
Opening of the ion channel with light

Controlling nerve cells with the aid of light: this is made possible by optogenetics. It enables, for example, the investigation of neurobiological processes with unprecedented spatial and temporal precision. The key tool of optogenetics is the light-activated protein channelrhodopsin. Biophysicists from Bochum and Berlin have now succeeded in explaining the switching mechanism through an interdisciplinary approach. The researchers report on their findings in the “Journal of Biological Chemistry”.


The Bochum homology model predicts the structure of a channelrhodopsin so well that it has been even possible to make statements about its function. The illustration shows the prediction in comparison to the later crystal structure

Redistribution of water molecules

Until now, little has been known about the mechanism of the protein - especially about how the channel opens. However, deeper understanding is a prerequisite in order to be able to use the light-controlled protein specifically for neurobiological applications. In a new, multi-disciplinary approach, the Bochum scientists led by Prof. Dr. Klaus Gerwert (Department of Biophysics at the RUB) and their cooperation partners in Berlin have been able to shed light on the switching mechanism. The result: the light-induced change in the charge state of amino acid glutamate 90 (E90) triggers an increased penetration of water molecules, so that the protein can now purposefully conduct ions through the cell membrane.

Three methods combined

Using time-resolved infrared spectroscopy, the RUB biophysicists Jens Kuhne and Dr. Erik Freier have been able to show for the first time that the channel is opened through the deprotonation of the amino acid glutamate 90 (E90). In addition, the electrophysiological experiments of the researchers in Berlin confirm that a mutation of the amino acid leads to a change in the ion permeability of the protein. Instead of using safety goggles and lab coats, the two biophysicists Kirstin Eisenhauer and Dr. Steffen Wolf at the Department of Biophysics used supercomputers to simulate how the protonation change of the glutamate opens the channel and allows water molecules to penetrate.

Internationally preeminent

The work has attained particular distinction right now, because shortly after the Bochum pre-publication on the Internet, Japanese researchers published the three-dimensional structure of a channelrhodopsin online in “Nature”. “The structure work impressively confirms our biomolecular simulations and the key role played by the amino acid E90 in the switching of the channel”, says Prof. Klaus Gerwert. “We are therefore particularly proud to have been preeminent in this internationally competitive field.” In 2010, optogenetics was distinguished by “Nature Methods” as the “Method of the Year”. Using this method, researchers have succeeded, for example, in restoring the eyesight of blind mice.

Bibliographic record

K. Eisenhauer, J. Kuhne, E. Ritter, A. Berndt, S. Wolf, E. Freier, F. Bartl, P. Hegemann, K. Gerwert,: In channelrhodopsin-2 E90 is crucial for ion selectivity and is deprotonated during the photocycle, The Journal of Biological Chemistry, Vol. 287, Issue 9, 6904-6911, 2012, DOI: 10.1074/jbc.M111.327700

Further information

Prof. Dr. Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität Bochum, Tel. +49 234 32 24461, gerwert@bph.rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>