Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optogenetic tool elucidated: RUB researchers explain channelrhodopsin

28.02.2012
Opening of the ion channel with light

Controlling nerve cells with the aid of light: this is made possible by optogenetics. It enables, for example, the investigation of neurobiological processes with unprecedented spatial and temporal precision. The key tool of optogenetics is the light-activated protein channelrhodopsin. Biophysicists from Bochum and Berlin have now succeeded in explaining the switching mechanism through an interdisciplinary approach. The researchers report on their findings in the “Journal of Biological Chemistry”.


The Bochum homology model predicts the structure of a channelrhodopsin so well that it has been even possible to make statements about its function. The illustration shows the prediction in comparison to the later crystal structure

Redistribution of water molecules

Until now, little has been known about the mechanism of the protein - especially about how the channel opens. However, deeper understanding is a prerequisite in order to be able to use the light-controlled protein specifically for neurobiological applications. In a new, multi-disciplinary approach, the Bochum scientists led by Prof. Dr. Klaus Gerwert (Department of Biophysics at the RUB) and their cooperation partners in Berlin have been able to shed light on the switching mechanism. The result: the light-induced change in the charge state of amino acid glutamate 90 (E90) triggers an increased penetration of water molecules, so that the protein can now purposefully conduct ions through the cell membrane.

Three methods combined

Using time-resolved infrared spectroscopy, the RUB biophysicists Jens Kuhne and Dr. Erik Freier have been able to show for the first time that the channel is opened through the deprotonation of the amino acid glutamate 90 (E90). In addition, the electrophysiological experiments of the researchers in Berlin confirm that a mutation of the amino acid leads to a change in the ion permeability of the protein. Instead of using safety goggles and lab coats, the two biophysicists Kirstin Eisenhauer and Dr. Steffen Wolf at the Department of Biophysics used supercomputers to simulate how the protonation change of the glutamate opens the channel and allows water molecules to penetrate.

Internationally preeminent

The work has attained particular distinction right now, because shortly after the Bochum pre-publication on the Internet, Japanese researchers published the three-dimensional structure of a channelrhodopsin online in “Nature”. “The structure work impressively confirms our biomolecular simulations and the key role played by the amino acid E90 in the switching of the channel”, says Prof. Klaus Gerwert. “We are therefore particularly proud to have been preeminent in this internationally competitive field.” In 2010, optogenetics was distinguished by “Nature Methods” as the “Method of the Year”. Using this method, researchers have succeeded, for example, in restoring the eyesight of blind mice.

Bibliographic record

K. Eisenhauer, J. Kuhne, E. Ritter, A. Berndt, S. Wolf, E. Freier, F. Bartl, P. Hegemann, K. Gerwert,: In channelrhodopsin-2 E90 is crucial for ion selectivity and is deprotonated during the photocycle, The Journal of Biological Chemistry, Vol. 287, Issue 9, 6904-6911, 2012, DOI: 10.1074/jbc.M111.327700

Further information

Prof. Dr. Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität Bochum, Tel. +49 234 32 24461, gerwert@bph.rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

nachricht Calcium may play a role in the development of Parkinson's disease
19.02.2018 | University of Cambridge

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>