Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optogenetic tool elucidated: RUB researchers explain channelrhodopsin

28.02.2012
Opening of the ion channel with light

Controlling nerve cells with the aid of light: this is made possible by optogenetics. It enables, for example, the investigation of neurobiological processes with unprecedented spatial and temporal precision. The key tool of optogenetics is the light-activated protein channelrhodopsin. Biophysicists from Bochum and Berlin have now succeeded in explaining the switching mechanism through an interdisciplinary approach. The researchers report on their findings in the “Journal of Biological Chemistry”.


The Bochum homology model predicts the structure of a channelrhodopsin so well that it has been even possible to make statements about its function. The illustration shows the prediction in comparison to the later crystal structure

Redistribution of water molecules

Until now, little has been known about the mechanism of the protein - especially about how the channel opens. However, deeper understanding is a prerequisite in order to be able to use the light-controlled protein specifically for neurobiological applications. In a new, multi-disciplinary approach, the Bochum scientists led by Prof. Dr. Klaus Gerwert (Department of Biophysics at the RUB) and their cooperation partners in Berlin have been able to shed light on the switching mechanism. The result: the light-induced change in the charge state of amino acid glutamate 90 (E90) triggers an increased penetration of water molecules, so that the protein can now purposefully conduct ions through the cell membrane.

Three methods combined

Using time-resolved infrared spectroscopy, the RUB biophysicists Jens Kuhne and Dr. Erik Freier have been able to show for the first time that the channel is opened through the deprotonation of the amino acid glutamate 90 (E90). In addition, the electrophysiological experiments of the researchers in Berlin confirm that a mutation of the amino acid leads to a change in the ion permeability of the protein. Instead of using safety goggles and lab coats, the two biophysicists Kirstin Eisenhauer and Dr. Steffen Wolf at the Department of Biophysics used supercomputers to simulate how the protonation change of the glutamate opens the channel and allows water molecules to penetrate.

Internationally preeminent

The work has attained particular distinction right now, because shortly after the Bochum pre-publication on the Internet, Japanese researchers published the three-dimensional structure of a channelrhodopsin online in “Nature”. “The structure work impressively confirms our biomolecular simulations and the key role played by the amino acid E90 in the switching of the channel”, says Prof. Klaus Gerwert. “We are therefore particularly proud to have been preeminent in this internationally competitive field.” In 2010, optogenetics was distinguished by “Nature Methods” as the “Method of the Year”. Using this method, researchers have succeeded, for example, in restoring the eyesight of blind mice.

Bibliographic record

K. Eisenhauer, J. Kuhne, E. Ritter, A. Berndt, S. Wolf, E. Freier, F. Bartl, P. Hegemann, K. Gerwert,: In channelrhodopsin-2 E90 is crucial for ion selectivity and is deprotonated during the photocycle, The Journal of Biological Chemistry, Vol. 287, Issue 9, 6904-6911, 2012, DOI: 10.1074/jbc.M111.327700

Further information

Prof. Dr. Klaus Gerwert, Department of Biophysics, Faculty of Biology and Biotechnology at the Ruhr-Universität Bochum, Tel. +49 234 32 24461, gerwert@bph.rub.de

Editor: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de

More articles from Life Sciences:

nachricht Bacteria as pacemaker for the intestine
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Researchers identify how bacterium survives in oxygen-poor environments
22.11.2017 | Columbia University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Corporate coworking as a driver of innovation

22.11.2017 | Business and Finance

PPPL scientists deliver new high-resolution diagnostic to national laser facility

22.11.2017 | Physics and Astronomy

Quantum optics allows us to abandon expensive lasers in spectroscopy

22.11.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>