Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optogenetic probes to image brain electrical activity in laboratory mice

14.07.2010
RIKEN scientists have developed a genetically-encoded fluorescent sensor that can act as a direct optical indicator of signaling activity in the living brain.

This powerful tool, described in a new article from Nature Methods, promises to help neuroscientists identify and monitor the behavior of neural circuits involved in motor activity, sensory perception and other functions.

Researchers have historically analyzed the complex electrical activity of the brain using an invasive approach involving tiny electrodes, whose large size relative to individual nerve cells has limited the number of locations from which neuronal activity can be sampled. Optimal imaging methods overcome this limitation with molecular size probes that transform the electrical signals into an optical reporter signal.

The voltage-sensitive fluorescent proteins (VSFPs) developed by Thomas Knöpfel’s team at the RIKEN Brain Science Institute represent an important step in this direction. These are engineered proteins that reside within the membranes of neurons, each of which is fused to two different fluorescent proteins. Whenever a neuron receives a stimulatory signal, the resulting change in voltage potential in the cell membrane causes the VSFPs to rearrange into a configuration that causes a readily detectable change in the optical signal generated by the VSFP, in a phenomenon known as Förster Resonance Energy Transfer.

Knöpfel’s laboratory pionered the development of these sensors for more than 10 years but up to now the function of these probes was only demonstrated by recording electrical activity from 2-dimensional networks of cultured nerve cells. In the latest edition of Nature Methods, the team presents the first experimental confirmation that these probes are able to report electrical activity of nerve cells in the brains of living mice. The researchers used genetically modified mice to localize the VSFP probe within specific subsets of cortical neurons within a brain area called the somatosensory cortex. Each mouse whisker is wired to discrete neural circuits in the somatosensory cortex, and the researchers found that they could readily detect changes in the membrane voltage of these circuit elements as each whisker was manipulated. Based on these experiments, they were essentially able to reconstruct maps of the cell populations that operate as ‘receptive areas’ for individual whiskers.

Being genetically encoded, VSFPs offer several advantages over other commonly-used approaches to monitoring neuronal activity. They can essentially be ‘programmed’ for selective expression within specific subtypes of neurons or particular regions of the brain, and could be used to chart long-range neural circuits extending over considerable distances, unlike fluorescent dyes that label cells non-specifically and can only be applied within a relatively limited volume of the brain. Other genetically-encoded sensors have been developed that respond to calcium flux in the immediate aftermath of neuronal firing, but these represent indirect indicators and generally respond more slowly to neuronal activity.

Given the high degree of spatial and temporal resolution displayed by the VSFPs in this study, Knöpfel is confident that they will prove a useful tool for researchers hoping to understand how patterns of neuronal activity correlate with behavior or physiological changes in the living brain. “The ability of VSFPs to report faster signals, along with genetic targeting, will allow new approaches to the study of the dynamic interaction of assemblies of neurons,” he says. “This will facilitate the investigation of fundamental questions of information processing in the brain, such as the circuit operations involved in sensing our environment and generation of body movements, but will also be applicable to directly visualize cognitive functions.”

For more information, please contact:

Dr. Thomas Knöpfel
Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9740 / Fax: +81-(0)48-467-9739
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>