Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optogenetic probes to image brain electrical activity in laboratory mice

14.07.2010
RIKEN scientists have developed a genetically-encoded fluorescent sensor that can act as a direct optical indicator of signaling activity in the living brain.

This powerful tool, described in a new article from Nature Methods, promises to help neuroscientists identify and monitor the behavior of neural circuits involved in motor activity, sensory perception and other functions.

Researchers have historically analyzed the complex electrical activity of the brain using an invasive approach involving tiny electrodes, whose large size relative to individual nerve cells has limited the number of locations from which neuronal activity can be sampled. Optimal imaging methods overcome this limitation with molecular size probes that transform the electrical signals into an optical reporter signal.

The voltage-sensitive fluorescent proteins (VSFPs) developed by Thomas Knöpfel’s team at the RIKEN Brain Science Institute represent an important step in this direction. These are engineered proteins that reside within the membranes of neurons, each of which is fused to two different fluorescent proteins. Whenever a neuron receives a stimulatory signal, the resulting change in voltage potential in the cell membrane causes the VSFPs to rearrange into a configuration that causes a readily detectable change in the optical signal generated by the VSFP, in a phenomenon known as Förster Resonance Energy Transfer.

Knöpfel’s laboratory pionered the development of these sensors for more than 10 years but up to now the function of these probes was only demonstrated by recording electrical activity from 2-dimensional networks of cultured nerve cells. In the latest edition of Nature Methods, the team presents the first experimental confirmation that these probes are able to report electrical activity of nerve cells in the brains of living mice. The researchers used genetically modified mice to localize the VSFP probe within specific subsets of cortical neurons within a brain area called the somatosensory cortex. Each mouse whisker is wired to discrete neural circuits in the somatosensory cortex, and the researchers found that they could readily detect changes in the membrane voltage of these circuit elements as each whisker was manipulated. Based on these experiments, they were essentially able to reconstruct maps of the cell populations that operate as ‘receptive areas’ for individual whiskers.

Being genetically encoded, VSFPs offer several advantages over other commonly-used approaches to monitoring neuronal activity. They can essentially be ‘programmed’ for selective expression within specific subtypes of neurons or particular regions of the brain, and could be used to chart long-range neural circuits extending over considerable distances, unlike fluorescent dyes that label cells non-specifically and can only be applied within a relatively limited volume of the brain. Other genetically-encoded sensors have been developed that respond to calcium flux in the immediate aftermath of neuronal firing, but these represent indirect indicators and generally respond more slowly to neuronal activity.

Given the high degree of spatial and temporal resolution displayed by the VSFPs in this study, Knöpfel is confident that they will prove a useful tool for researchers hoping to understand how patterns of neuronal activity correlate with behavior or physiological changes in the living brain. “The ability of VSFPs to report faster signals, along with genetic targeting, will allow new approaches to the study of the dynamic interaction of assemblies of neurons,” he says. “This will facilitate the investigation of fundamental questions of information processing in the brain, such as the circuit operations involved in sensing our environment and generation of body movements, but will also be applicable to directly visualize cognitive functions.”

For more information, please contact:

Dr. Thomas Knöpfel
Laboratory for Neuronal Circuit Dynamics
RIKEN Brain Science Institute
Tel: +81-(0)48-467-9740 / Fax: +81-(0)48-467-9739
Ms. Tomoko Ikawa (PI officer)
Global Relations Office
RIKEN
Tel: +81-(0)48-462-1225 / Fax: +81-(0)48-462-4715
Email: koho@riken.jp

gro-pr | Research asia research news
Further information:
http://www.riken.jp
http://www.researchsea.com

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>