Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Optimized Photosynthesis by High-Precision Lighting

25.09.2009
New PhotoBioreactor Illuminates Variety of Phototropic Cells with Selective Light Spectra

Phototrophic organisms ranging from green and red algae, to cyanobacteria, green sulfur bacteria and plant suspensions, can now enjoy optimal lighting conditions in bioreactors.


Making this possible are LED illuminators from DASGIP, which are integrated in the bioreactor. Creating specific light emissions at 457 nm, 660 nm, 560 nm and 623 nm gives a wide range of phototropic cells exactly the light spectrum they need for optimal production.

By arranging several LEDs in up to four illuminators inside the bioreactor, optimum light conditions for growth and photosynthesis are provided. The spectral composition as well as the light intensity can be predefined and adjusted online with the DASGIP Control Software 4.0.

Users who work with phototropic cells can take advantage of the advanced process control features offered by DASGIP systems: monitoring and control of temperature, pH, dissolved oxygen and redox potential, agitation, gassing with pure and mixed gasses, sampling, fully integrated exhaust gas analysis, monitoring of the optical density and the precise feeding of up to eight different liquids.

The PhotoBioreactor is based on an enhancement of the DASGIP benchtop line of reactors designed for microbiology and cell cultivation applications. They can be transformed into PhotoBioreactors - and back into usual benchtop reactors - in just a few easy steps. That means the PhotoBioreactors fit perfectly in the modular design of the DASGIP systems, which stand out due to their highly-efficient application potential in biotechnology laboratories. In truly parallel operation with up to 16 reactors, the DASGIP system yields reproducible, reliable and easily scalable process results.

About DASGIP: DASGIP AG develops and manufactures technologically advanced Parallel Bioreactor Systems for the cultivation of microbial, plant, animal and human cells at bench top scale. Process engineers, scientists and product developers from biotechnological, pharmaceutical and chemical companies as well as research institutions use DASGIP Parallel Bioreactor Systems for their biotechnological processes and benefit from increased productivity, high reproducibility, and ease of scale up, resulting in accelerated product development cycles. DASGIP is located in Juelich (Germany) and Shrewsbury MA (USA)

Contact: Jennefer Vogt, Tel: +49 2461.980 -118, j.vogt@dasgip.de

DASGIP AG
Rudolf-Schulten-Str. 5
D – 52428 Jülich
Germany
Tel: +49 2461.980.0
Fax: +49 2461.980.100
info@dasgip.de

Jennefer Vogt | DASGIP AG
Further information:
http://www.dasgip.com/news/40/?utm_source=INNOVATIONSREPORT&utm_medium=press%2Brelease&utm_term=2009_09_EN&utm_content=news&utm_campaig

Further reports about: DASGIP High-Precision LED Lighting PhotoBioreactor bioreactor photosynthesis

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>