Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opinion: H5N1 flu is just as dangerous as feared, now requires action

24.02.2012
The debate about the potential severity of an outbreak of airborne H5N1 influenza in humans needs to move on from speculation and focus instead on how we can safely continue H5N1 research and share the results among researchers, according to a commentary to be published in mBio®, the online open-access journal of the American Society for Microbiology, on Friday, February 24.

H5N1 influenza has been at the center of heated discussions in science and policy circles since the U.S. National Science Advisory Board for Biosecurity (NSABB) asked the authors of two recent H5N1 investigations and the scientific journals that planned to publish the studies to withhold crucial details of the research in the interest of biosecurity.

In the mBio® commentary, Michael Osterholm* and Nicholas Kelley, of the Center for Infectious Disease Research and Policy at the University of Minnesota, present their case that H5N1 is a very dangerous virus, based on their analysis of published studies of the seroepidemiology of H5N1 in humans. H5N1 flu infections have exceedingly high mortality, they say, and current vaccines and antiviral drugs will not pull us out of a global H5N1 pandemic. "We believe that the assertion that the case-fatality rate of H5N1 influenza in humans may be overestimated is based on a flawed data analysis,”Osterholm said.

Analysis of reports of H5N1 seroprevalence that include data from the 1997 Hong Kong outbreak as well as data from 2004 to date will give a misleading impression because the 1997 outbreak was a very different “biologic event” that is recognized as such by the WHO, because the 1997 H5N1 virus has a significantly different genotype from that of later H5N1 viruses. This is why the WHO does not include the Hong Kong H5N1 virus data in any analysis of H5N1 transmission, and the 1997 Hong Kong virus is not recommended for inclusion in H5N1 vaccines, Osterholm explained.

Seroepidemiologic studies that have examined the exposure of various groups of people to H5N1 viruses only from 2004 onward indicate that only a small segment of the population has ever been exposed to H5N1, and that among those that have been exposed, many become seriously ill or die.

"The available seroepidemiologic data for human H5N1 infection support the current WHO reported case-fatality rates of 30% to 80%," Osterholm says. In the event of an H5N1 pandemic, they point out, if the virus is even one tenth or one twentieth as virulent as has been documented in these smaller outbreaks, the resulting fatality rate would be worse than in the 1918 pandemic, in which 2% of infected individuals died.

Vaccines will not head off an H5N1 pandemic either, the authors say, since the time required to develop and manufacture an influenza vaccine specific to new outbreak strain has resulted in “too little, too late” vaccine responses for the 1957, 1968, and 2009 influenza pandemics, and not much in the process has changed since 2009.

"The technology behind our current influenza vaccines is simply not sufficient to address the complex challenges associated with an influenza pandemic in the 21st century," Osterholm and Kelley say.

This is the heart of the matter, they say: there has been enough discussion about how severe an H5N1 pandemic might be. Moving forward, the current controversy has provided a valuable opportunity for scientists and public policy experts to discuss influenza research and preparedness and create "a roadmap for the future." The discussion among scientists and policy makers needs to move on from whether H5N1 poses a serious international threat - as it clearly does - and begin discussing how we can prevent these viruses from escaping labs and how scientists can share their flu-related results with those who have a need to know.

There are critical questions that need to be answered, the authors say. For instance, how can scientists conduct virus-transmission studies in mammals safely and how can scientists share research methods and results with those who have a need to know? We also need to come to agreement on how to ensure that strains of H5N1 viruses created in the lab don't escape those controlled environments, the authors say. And new, more effective vaccine technologies are needed that can enable substantially faster production. Resolving these issues could allow H5N1 research and preparedness to serve as a springboard for solving similar problems with existing or emerging pathogens.

*Michael Osterholm is a member of the National Science Advisory Board for Biosecurity.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Last Updated on Thursday, 23 February 2012 13:45

Garth Hogan | EurekAlert!
Further information:
http://www.mbio.asm.org
http://www.asmusa.org

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>