Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New operating principle of potassium channels discovered

28.01.2014
Neurons transmit information with the help of special channels that allow the passage of potassium ions. Defective potassium channels play a role in epilepsy and depression.

The scientists working with Prof. Henning Stahlberg at the Biozentrum of the University of Basel have now identified the complete 3D structure of a particular potassium channel, a HCN channel.


3D model of several HCN potassium channels arranged side by side.
University of Basel

This enabled them to draw conclusions about its mechanism of action, which they describe in the current issue of “Nature Communications”.

Neurons conduct information by way of electrical impulses through our body. Potassium channels are a key component of this electrical circuit and are controlled either by an electrical impulse or through signaling molecules. In man, the dysfunction of the so-called HCN potassium channels is associated with neurological disorders such as epilepsy and depression. Prof. Henning Stahlberg’s team at the Biozentrum of the University of Basel has now elucidated the full structure of a bacterial counterpart of this type of potassium channel, which has provided new insights into its functioning.

New operating principle thanks to the 3D structure
Potassium channels are embedded in the membrane of cells. They form a pore with a filter that selectively allows the passage of potassium ions, and which is controlled by the signaling molecule cAMP. It was previously assumed that the pore could open and close, thus regulating the flow of potassium ions. Stahlberg’s team has now, however, found indications for another mode of action. Employing crystallization technology and electron microscopy, the scientists have reconstructed the intact three dimensional structure of the bacterial channel in its natural environment in both the presence and absence of cAMP.

Based on the analysis of these structures, they discovered, contrary to popular belief, that the pore always remains open. “When the signaling molecule cAMP docks onto the potassium channel, it causes a rearrangement and shift in the protein scaffold,” explains Julia Kowal, first author of this study. “We think that cAMP in fact widens the filter somewhat, thereby controlling the flow of potassium ions.” The newly uncovered structural details have made it possible for the researchers to consider the mode of functioning of these channels from a new perspective.

Mechanism relevant for new drugs
Stahlberg would like to investigate the filter region more closely with an extremely high resolution camera, in order to resolve the last remaining questions about this mechanism. These signal-driven potassium channels are also referred to as “pacemaker channels”. They help to generate the rhythm of the heart as well as the rhythmic excitability of neurons. The precise understanding of the mode of action is thus the basis for developing specific drugs for the treatment of epilepsy and cardiac arrhythmias.
Original Citation
Julia Kowal, Mohamed Chami, Paul Baumgartner, Marcel Arheit, Po-Lin Chiu, Martina Rangl, Simon Scheuring, Gunnar F. Schröder, Crina M. Nimigean, and Henning Stahlberg
Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1.
Nature Communications, Published Online 28 January 2014
DOI: 10.1038/ncomms4106
Further Information
Prof. Henning Stahlberg, Biozentrum, University of Basel at the Department for Biosystems Science and Engineering (D-BSSE), Tel.: +41 61 387 32 62, E-mail: henning.stahlberg@unibas.ch

Katrin Bühler | Universität Basel
Further information:
http://www.unibas.ch

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>