Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


New operating principle of potassium channels discovered

Neurons transmit information with the help of special channels that allow the passage of potassium ions. Defective potassium channels play a role in epilepsy and depression.

The scientists working with Prof. Henning Stahlberg at the Biozentrum of the University of Basel have now identified the complete 3D structure of a particular potassium channel, a HCN channel.

3D model of several HCN potassium channels arranged side by side.
University of Basel

This enabled them to draw conclusions about its mechanism of action, which they describe in the current issue of “Nature Communications”.

Neurons conduct information by way of electrical impulses through our body. Potassium channels are a key component of this electrical circuit and are controlled either by an electrical impulse or through signaling molecules. In man, the dysfunction of the so-called HCN potassium channels is associated with neurological disorders such as epilepsy and depression. Prof. Henning Stahlberg’s team at the Biozentrum of the University of Basel has now elucidated the full structure of a bacterial counterpart of this type of potassium channel, which has provided new insights into its functioning.

New operating principle thanks to the 3D structure
Potassium channels are embedded in the membrane of cells. They form a pore with a filter that selectively allows the passage of potassium ions, and which is controlled by the signaling molecule cAMP. It was previously assumed that the pore could open and close, thus regulating the flow of potassium ions. Stahlberg’s team has now, however, found indications for another mode of action. Employing crystallization technology and electron microscopy, the scientists have reconstructed the intact three dimensional structure of the bacterial channel in its natural environment in both the presence and absence of cAMP.

Based on the analysis of these structures, they discovered, contrary to popular belief, that the pore always remains open. “When the signaling molecule cAMP docks onto the potassium channel, it causes a rearrangement and shift in the protein scaffold,” explains Julia Kowal, first author of this study. “We think that cAMP in fact widens the filter somewhat, thereby controlling the flow of potassium ions.” The newly uncovered structural details have made it possible for the researchers to consider the mode of functioning of these channels from a new perspective.

Mechanism relevant for new drugs
Stahlberg would like to investigate the filter region more closely with an extremely high resolution camera, in order to resolve the last remaining questions about this mechanism. These signal-driven potassium channels are also referred to as “pacemaker channels”. They help to generate the rhythm of the heart as well as the rhythmic excitability of neurons. The precise understanding of the mode of action is thus the basis for developing specific drugs for the treatment of epilepsy and cardiac arrhythmias.
Original Citation
Julia Kowal, Mohamed Chami, Paul Baumgartner, Marcel Arheit, Po-Lin Chiu, Martina Rangl, Simon Scheuring, Gunnar F. Schröder, Crina M. Nimigean, and Henning Stahlberg
Ligand-induced structural changes in the cyclic nucleotide-modulated potassium channel MloK1.
Nature Communications, Published Online 28 January 2014
DOI: 10.1038/ncomms4106
Further Information
Prof. Henning Stahlberg, Biozentrum, University of Basel at the Department for Biosystems Science and Engineering (D-BSSE), Tel.: +41 61 387 32 62, E-mail:

Katrin Bühler | Universität Basel
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>