Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening up the stem cell niche: German science team modifies the way for research of blood stem cells

09.03.2009
Newly developed mouse model allows for transplantation of blood stem cells without previous irradiation of the recipients

Understanding the function of hematopoietic stem cells (HSCs) that provide life-long all components of our immune system requires research under physiological conditions in a living organism (in vivo).

To study their proper control and potency, HSCs are transplanted into appropriate recipients. However, there have been two major obstacles preventing engraftment of donor HSCs into recipients: 1. In cases of genetically unrelated donors and recipients, the donor cells are rejected by the recipient's immune system. 2.

HSCs rarely enter the stem cell 'niche', which is a specialized space structure in the bone marrow. To open access for HSCs to these stem cell niches, and to suppress rejection of donor HSCs, recipients are usually irradiated. A team from the University of Ulm around Claudia Waskow (now at the Center for Regenerative Therapies Dresden - CRTD) and Hans-Reimer Rodewald, together with Rosel Blasig from the Leibniz-Institute for Molecular Pharmacology in Berlin, developed a new mouse model, which allows the transplantation of HSCs without the need for previous irradiation, facilitating the analysis of stem cell function.

In the current issue of Nature Methods, the scientists reveal the trick: "We combined three genetic mutations and could show that only this combined triple mutant allows for successful HSC transplantation without irradiation", explains Dr. Claudia Waskow of the CRTD. 'All three mutations were known, but we went one step further and brought them all together in one single mouse strain.' Normally, donors and recipients are histoincompatible, i.e. their immune systems reject each others tissues. This is also true for donor HSCs that are attacked by the recipient's immune system and consequently rejected. Irradiation reduces the risk of graft rejection, because it destroys cells of the recipient's immune system. However, irradiation is harmful for the body and has strong side effects on many cell types, for example gut cells. The second hurdle in HSC transplantation is to make donor HSCs efficiently enter and continuously stay in the specialized niches that support the survival and function of all HSCs. In a healthy recipient, these niches are occupied by endogenous blood stem cells. While they are damaged and depleted by irradiation, they can be replaced by donor HSCs. With the newly developed mouse model, irradiation is no longer required: The mutation in the growth factor receptor Kit (KitW/Wv) 'weakens' the recipient's stem cell compartment and therefore makes space for incoming donor stem cells. The other two mutations that were introduced into these 'universal recipients' are known to prevent rejection of donor HSCs by the recipient's immune system. Thus, these mice appear to accept all blood stem cells regardless of the mouse strain origin of the HSCs.

What exactly is now the advance in using a non-irradiated living organism? 'It is only possible to study the regeneration of HSCs in vivo. Observations in tissue culture are often not applicable to in vivo situations', states Waskow. 'Because we do not need to irradiate the mice anymore, all organs including the bone marrow remain undamaged, which helps us to study the normal physiological behavior of transplanted HSCs and the normal HSC niches much better'. Important processes of blood stem cells such as the 'homing' of HSCs can now be studied under more natural conditions. 'Homing' of HSCs to their appropriate locations in the body occurs when transplanted cells move from the blood into the bone marrow after transplantation.

It remains to be seen whether the new mouse line will accept human HSCs in a better or more sustained manner than in currently available mouse models. If so, the results of this study could lead to a better understanding of the regulation of human blood formation. Even studies on human infectious diseases or cancer may become feasible. In future studies, Claudia Waskow and Hans-Reimer Rodewald want to concentrate on these possibilities and thereby contribute to a better understanding of the generation and maintenance of the immune system by HSCs

Claudia Waskow, Vikas Madan, Susanne Bartels, Céline Costa, Rosel Blasig, Hans-Reimer Rodewald "Hematopoietic stem cell transplantation without irridation" Nature Methods. Online publication ahead: march 8, 2009 | doi: 10.1038/nmeth.1309.

The abstract of the article can be viewed under specification of the doi-Number from March 8., 6pm here: http://dx.doi.org/. For the full article please contact press@nature.com or the press office of the CRTD.

Background: DFG-Center for Regenerative Therapies Dresden (CRTD)
Started in January 2006 as the DFG Center for Regenerative Therapies Dresden, the CRTD became the Cluster of Excellence "From cells to tissues to therapies: Engineering the cellular basis of regeneration" of the Dresden University of Technology in October 2006. The goal of the center is to develop novel regenerative therapies for diseases like diabetes, Parkinson, or Cardiovascular diseases. The CRTD is set up as an interdisciplinary network of over 80 principal investigators from seven research institutes in Dresden and several economic partners.
Contact for Journalists:
Katrin Bergmann, Press officer at the CRTD
Phone: +49 351 463 40347, E-Mail: katrin.bergmann@crt-dresden.de
Claudia Waskow, Research group leader at the CRTD
Phone: +49 351 458 6448, E-Mail: claudia.waskow@crt-dresden.de
Hans-Reimer Rodewald, Institute for Immunology, University Hospital Ulm,
Phone: +49 731 5006 5200, E-Mail: hans-reimer.rodewald@uni-ulm.de

Katrin Bergmann | idw
Further information:
http://www.crt-dresden.de
http://www.uni-ulm.de/klinik/immunologie/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>