Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Opening up the stem cell niche: German science team modifies the way for research of blood stem cells

Newly developed mouse model allows for transplantation of blood stem cells without previous irradiation of the recipients

Understanding the function of hematopoietic stem cells (HSCs) that provide life-long all components of our immune system requires research under physiological conditions in a living organism (in vivo).

To study their proper control and potency, HSCs are transplanted into appropriate recipients. However, there have been two major obstacles preventing engraftment of donor HSCs into recipients: 1. In cases of genetically unrelated donors and recipients, the donor cells are rejected by the recipient's immune system. 2.

HSCs rarely enter the stem cell 'niche', which is a specialized space structure in the bone marrow. To open access for HSCs to these stem cell niches, and to suppress rejection of donor HSCs, recipients are usually irradiated. A team from the University of Ulm around Claudia Waskow (now at the Center for Regenerative Therapies Dresden - CRTD) and Hans-Reimer Rodewald, together with Rosel Blasig from the Leibniz-Institute for Molecular Pharmacology in Berlin, developed a new mouse model, which allows the transplantation of HSCs without the need for previous irradiation, facilitating the analysis of stem cell function.

In the current issue of Nature Methods, the scientists reveal the trick: "We combined three genetic mutations and could show that only this combined triple mutant allows for successful HSC transplantation without irradiation", explains Dr. Claudia Waskow of the CRTD. 'All three mutations were known, but we went one step further and brought them all together in one single mouse strain.' Normally, donors and recipients are histoincompatible, i.e. their immune systems reject each others tissues. This is also true for donor HSCs that are attacked by the recipient's immune system and consequently rejected. Irradiation reduces the risk of graft rejection, because it destroys cells of the recipient's immune system. However, irradiation is harmful for the body and has strong side effects on many cell types, for example gut cells. The second hurdle in HSC transplantation is to make donor HSCs efficiently enter and continuously stay in the specialized niches that support the survival and function of all HSCs. In a healthy recipient, these niches are occupied by endogenous blood stem cells. While they are damaged and depleted by irradiation, they can be replaced by donor HSCs. With the newly developed mouse model, irradiation is no longer required: The mutation in the growth factor receptor Kit (KitW/Wv) 'weakens' the recipient's stem cell compartment and therefore makes space for incoming donor stem cells. The other two mutations that were introduced into these 'universal recipients' are known to prevent rejection of donor HSCs by the recipient's immune system. Thus, these mice appear to accept all blood stem cells regardless of the mouse strain origin of the HSCs.

What exactly is now the advance in using a non-irradiated living organism? 'It is only possible to study the regeneration of HSCs in vivo. Observations in tissue culture are often not applicable to in vivo situations', states Waskow. 'Because we do not need to irradiate the mice anymore, all organs including the bone marrow remain undamaged, which helps us to study the normal physiological behavior of transplanted HSCs and the normal HSC niches much better'. Important processes of blood stem cells such as the 'homing' of HSCs can now be studied under more natural conditions. 'Homing' of HSCs to their appropriate locations in the body occurs when transplanted cells move from the blood into the bone marrow after transplantation.

It remains to be seen whether the new mouse line will accept human HSCs in a better or more sustained manner than in currently available mouse models. If so, the results of this study could lead to a better understanding of the regulation of human blood formation. Even studies on human infectious diseases or cancer may become feasible. In future studies, Claudia Waskow and Hans-Reimer Rodewald want to concentrate on these possibilities and thereby contribute to a better understanding of the generation and maintenance of the immune system by HSCs

Claudia Waskow, Vikas Madan, Susanne Bartels, Céline Costa, Rosel Blasig, Hans-Reimer Rodewald "Hematopoietic stem cell transplantation without irridation" Nature Methods. Online publication ahead: march 8, 2009 | doi: 10.1038/nmeth.1309.

The abstract of the article can be viewed under specification of the doi-Number from March 8., 6pm here: For the full article please contact or the press office of the CRTD.

Background: DFG-Center for Regenerative Therapies Dresden (CRTD)
Started in January 2006 as the DFG Center for Regenerative Therapies Dresden, the CRTD became the Cluster of Excellence "From cells to tissues to therapies: Engineering the cellular basis of regeneration" of the Dresden University of Technology in October 2006. The goal of the center is to develop novel regenerative therapies for diseases like diabetes, Parkinson, or Cardiovascular diseases. The CRTD is set up as an interdisciplinary network of over 80 principal investigators from seven research institutes in Dresden and several economic partners.
Contact for Journalists:
Katrin Bergmann, Press officer at the CRTD
Phone: +49 351 463 40347, E-Mail:
Claudia Waskow, Research group leader at the CRTD
Phone: +49 351 458 6448, E-Mail:
Hans-Reimer Rodewald, Institute for Immunology, University Hospital Ulm,
Phone: +49 731 5006 5200, E-Mail:

Katrin Bergmann | idw
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>