Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening the Door for CO2

24.08.2009
Flexible, three-dimensional lattice binds carbon dioxide selectively and efficiently

Until recently, factory smokestacks that produced nothing but carbon dioxide and water vapor were considered exemplary. Now CO2 has become notorious as a greenhouse gas, and the danger of climate change has become one of the most pressing environmental problems of our time.

How can we slow the increasing release of CO2? Efficient methods for the separation of this greenhouse gas from industrial exhaust are being sought. Korean researchers have now developed a porous material that can bind and store CO2 efficiently and highly selectively. As Myunghyun Paik Suh and Hye-Sun Choi report in the journal Angewandte Chemie, the lattice-like network contains flexible “columns” that can open the pores of the three-dimensional lattice for CO2.

Many porous materials are able to absorb CO2 and other gas molecules. However, the selective, room-temperature extraction of CO2 at atmospheric pressure from industrial exhaust containing other gases such as nitrogen, methane, and water remains a major technical challenge.

The research team has now developed porous, three-dimensional networks of coordination polymers. Various nickel complexes and organic molecules are used as building blocks that assemble into two-dimensional lattice-like planes, which in turn grow into stacks held together by “columns”. The special trick in this case is that the columns are not rigid, but very flexible. The corresponding cavities in the structure are thus of variable size and can adjust to the guest molecules that enter.

The symmetric molecule carbon dioxide has a permanent electrical quadrupole moment that can be described as two electrical dipoles sitting back-to-back and pointing in opposite directions. This quadrupole interacts with the three-dimensional lattice, and this effect causes the columns to open the “gates”, allowing the gas to enter the cavities. In contrast, nitrogen, hydrogen, and methane have much smaller quadrupole moments. The pores thus remain closed to them. The exclusion of nitrogen, which makes up a large proportion of air, is essential for any potential CO2 capture. In addition, the new nickel-containing materials are stable at temperatures up to 300 °C and are air- and water- stable—also an important requirement for potential industrial application.

If the surrounding pressure is reduced, the stored CO2 is released. This type of material is thus suited for processes in which carbon dioxide must be cyclically stored and then released through a change in pressure.

Author: Myunghyun Paik Suh, Seoul National University (Republic of Korea), http://chem.snu.ac.kr/eng/Faculty/faculty_detail.asp?seqno=27&link=faculty

Title: Highly Selective CO2 Capture in Flexible 3D Coordination Polymer Networks

Angewandte Chemie International Edition 2009, 48, No. 37, 6865–6869, doi: 10.1002/anie.200902836

Myunghyun Paik Suh | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://chem.snu.ac.kr/eng/Faculty/faculty_detail.asp?seqno=27&link=faculty

Further reports about: Angewandte Chemie CO2 carbon dioxide greenhouse gas organic molecule

More articles from Life Sciences:

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal
22.05.2018 | Friedrich-Alexander-Universität Erlangen-Nürnberg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>