Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opening a new window

09.12.2011
Water is opaque for wavelengths longer than 1300 nm limiting the optical spectroscopy of biological specimen. Yet, a local minimum of water absorption between 1600 nm and 1850 nm opens up a window for bond-selective deep tissue imaging such as mapping of atherosclerotic plaques.

A variety of advanced techniques have been developed to characterize the atherosclerotic plaque, including multidetector spiral computed tomography, magnetic resonance imaging, intravascular ultrasound, optical coherent tomography and intravascular near infrared spectroscopy.


Pu Wang and his colleagues from Purdue University, West Lafayette, and Indiana University School of Medicine (USA) now developed a promising new one: They employ an optical window between 1600 nm and 1850 nm for bond-selective deep tissue imaging. Label-free imaging of atherosclerotic plaques can be performed through optical excitation of first overtones of CH bonds and acoustic detection of the generated ultrasound waves in this previously underappreciated optical window.

Until now, the consensus was that the gold optical window lies between 650 and 1300 nm and that it stops at 1300 nm due to significant water absorption at longer wavelengths. The scientists noted that water absorption in the region beyond 1300 nm is modulated by the vibration transition of H2O: They observed a significant valley between 1600 and 1850 nm, where the absorption coefficient of pure water is at the same level as that of heme proteins in whole blood around 800 nm.

Considering the reduced scattering and diminished phototoxicity at longer wavelength excitation, the wavelength region from 1600 to 1850 nm is appealing as a new optical window for deep tissue imaging (light red shadow region). Importantly, the first overtone of CH vibration is located at the same window. Using this new window to carry out photoacoustic imaging, the scientists found a 5 times enhancement of photoacoustic signal by first overtone excitation of the methylene group CH2 at 1730 nm, compared to the second overtone excitation at 1210 nm.

This enhancement allowed 3D mapping of intramuscular fat with improved contrast and of lipid deposition inside an atherosclerotic artery wall in the presence of blood. Moreover, lipid and protein could be differentiated based on the first overtone absorption profiles of CH2 and methyl group CH3 in this window.

Selective vibrational photoacoustic microscopy imaging of collagen and lipids heralds the potential in diagnosis of vulnerable plaques through detection of the thickness of the collagen cap and the location of the lipid-laden plaque inside the arterial wall without molecular labeling that could alter tissue composition. (Text contributed by K. Maedefessel-Herrmann)

P. Wang et al., J. Biophotonics 5(1), 25-32 (2012), http://dx.doi.org/10.1002/jbio.201100102

J. Biophotonics, Volume 5, Issue 11 (2012)

Journal of Biophotonics publishes cutting edge research on interactions between light and biological material. The journal is highly interdisciplinary, covering research in the fields of physics, chemistry, biology and medicine. The scope extends from basic research to clinical applications. Connecting scientists who try to understand basic biological processes using light as a diagnostic and therapeutic tool, the journal offers a platform where the physicist communicates with the biologist and where the clinical practitioner learns about the latest tools for diagnosis of diseases. JBP offers fast publication times: down to 20 days from acceptance to publication. Latest Journal Impact Factor (2010): 4.240 (ISI Journal Citation Reports 2010)

Regina Hagen | Wiley-VCH Verlag GmbH & Co. KGaA
Further information:
http://www.biophotonics-journal.com
http://dx.doi.org/10.1002/jbio.201100102

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>