Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open Lid Reveals Mercury

19.10.2009
Simple test system for rapid, selective detection of methylmercury in biological samples

Mercury, the silvery liquid formerly used in thermometers, is now known to be highly toxic. The worst of the toxins are organic mercury compounds, such as methylmercury.

Most previous analytical procedures for the detection of methylmercury were technically difficult and could only be carried out in a laboratory. A Spanish and German team has now developed a new approach to detect the poison rapidly, easily, and on the spot. As the scientists report in the journal Angewandte Chemie, it is possible to imagine a rapid test in which test strips are simply dipped into suspect samples.

Mercury enters the environment through slashing and burning of rain forests and the combustion of coal; production of chlorine and cement factories also release mercury. The toxicity of mercury is strongly dependent on the types of chemical compounds it is in. The main problem is that in nature, many mercury compounds are converted into particularly dangerous methylmercury, which is concentrated in the food chain and contaminates marine animals in particular. People who regularly eat contaminated fish suffer from complaints such as headaches, pain in the limbs, heart, circulatory, and autoimmune diseases, paralysis, and blindness. Heavy chronic poisoning is deadly.

A team headed by Ramón Martínez-Máñez at the Polytechnical University of Valencia (Spain) and Knut Rurack at the Federal Institute of Materials Research and Testing (Berlin, Germany) has now developed a rapid test for the detection of this toxin based on the fact that mercury compounds are crazy about sulfur atoms. The researchers put dye molecules into the channels of an articifical porous mineral. On the surface of the mineral, they attached sulfur-containing groups, which in turn are attached to organic molecules that are so bulky that they cover the pores of the mineral like lids, keeping the dye inside. If a methylmercury-containing sample is added, it latches onto the sulfur-containing groups and splits off the “lids” of the pores. This opens the pores and releases the dye.

The main advantage of this approach is its amplification effect: only a few methylmercury particles are enough to release a large number of dye molecules. This allows for simple visual detection of trace concentrations of the toxin, even in complex biological samples. Another advantage is that the test is highly selective for methylmercury; water-soluble inorganic mercury compounds are excluded, so they do not result in a coloration.

The researchers imagine a kind of test strip that can simply be dipped into a prepared sample, of fish for example, to determine if it is contaminated with methylmercury.

Author: Ramón Martínez-Máñez, Universidad Politécnica de Valencia (Spain), mailto:rmaez@qim.upv.es

Title: The Determination of Methylmercury in Real Samples using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification

Angewandte Chemie International Edition 2009, 48, No. 45, 8519–8522, doi: 10.1002/anie.200904243

Ramón Martínez-Máñez | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

nachricht CWRU researchers find a chemical solution to shrink digital data storage
22.06.2017 | Case Western Reserve University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>