Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Open Lid Reveals Mercury

19.10.2009
Simple test system for rapid, selective detection of methylmercury in biological samples

Mercury, the silvery liquid formerly used in thermometers, is now known to be highly toxic. The worst of the toxins are organic mercury compounds, such as methylmercury.

Most previous analytical procedures for the detection of methylmercury were technically difficult and could only be carried out in a laboratory. A Spanish and German team has now developed a new approach to detect the poison rapidly, easily, and on the spot. As the scientists report in the journal Angewandte Chemie, it is possible to imagine a rapid test in which test strips are simply dipped into suspect samples.

Mercury enters the environment through slashing and burning of rain forests and the combustion of coal; production of chlorine and cement factories also release mercury. The toxicity of mercury is strongly dependent on the types of chemical compounds it is in. The main problem is that in nature, many mercury compounds are converted into particularly dangerous methylmercury, which is concentrated in the food chain and contaminates marine animals in particular. People who regularly eat contaminated fish suffer from complaints such as headaches, pain in the limbs, heart, circulatory, and autoimmune diseases, paralysis, and blindness. Heavy chronic poisoning is deadly.

A team headed by Ramón Martínez-Máñez at the Polytechnical University of Valencia (Spain) and Knut Rurack at the Federal Institute of Materials Research and Testing (Berlin, Germany) has now developed a rapid test for the detection of this toxin based on the fact that mercury compounds are crazy about sulfur atoms. The researchers put dye molecules into the channels of an articifical porous mineral. On the surface of the mineral, they attached sulfur-containing groups, which in turn are attached to organic molecules that are so bulky that they cover the pores of the mineral like lids, keeping the dye inside. If a methylmercury-containing sample is added, it latches onto the sulfur-containing groups and splits off the “lids” of the pores. This opens the pores and releases the dye.

The main advantage of this approach is its amplification effect: only a few methylmercury particles are enough to release a large number of dye molecules. This allows for simple visual detection of trace concentrations of the toxin, even in complex biological samples. Another advantage is that the test is highly selective for methylmercury; water-soluble inorganic mercury compounds are excluded, so they do not result in a coloration.

The researchers imagine a kind of test strip that can simply be dipped into a prepared sample, of fish for example, to determine if it is contaminated with methylmercury.

Author: Ramón Martínez-Máñez, Universidad Politécnica de Valencia (Spain), mailto:rmaez@qim.upv.es

Title: The Determination of Methylmercury in Real Samples using Organically Capped Mesoporous Inorganic Materials Capable of Signal Amplification

Angewandte Chemie International Edition 2009, 48, No. 45, 8519–8522, doi: 10.1002/anie.200904243

Ramón Martínez-Máñez | Angewandte Chemie
Further information:
http://pressroom.angewandte.org

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>