Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opalinus Clay as a potential host rock for nuclear waste repositories

08.03.2011
Nuclear chemists at Johannes Gutenberg University Mainz, Germany, are investigating the interaction between radioactive elements such as plutonium and clay stones

Scientists at Johannes Gutenberg University Mainz (JGU), Germany, have studied natural claystone in the laboratory for more than four years in order to determine how the radioactive elements plutonium and neptunium react with this rock.

The experiments have been performed as part of a Germany-wide project sponsored by the Federal Ministry of Economics and Technology (BMWi) to find a suitable geological repository for radioactive waste. Geological configurations that could play a role for the permanent disposal of nuclear waste include not only salt and granite formations, but also claystone. The results obtained by the team of nuclear chemists under the supervision of Professor Tobias Reich confirm that natural clay has certain useful properties that counteract the migration of radioactive materials. Professor Reich, director of the Institute of Nuclear Chemistry at Mainz University, summarizes the results obtained so far as follows: „It does seem that clay could be suitable as host rock, although we still need to wait for the outcome of long-term investigations.“

The cylinders of clay used by the Mainz team of nuclear chemists have come a long way: Cores of Opalinus Clay were obtained by drilling in the Underground Rock Laboratory Mont Terri in the Swiss Jura mountains. This clay formation was deposited some 180 million years ago. In Switzerland, Opalinus Clay is being considered as a rock formation for the storage of radioactive waste. The bore cores were first transferred to the Institute for Nuclear Waste Disposal (INE) in Karlsruhe, Germany, where they were cut in small round disks with a thickness of 11 millimeters. At the Institute of Nuclear Chemistry in Mainz, these clay disks were packed in diffusion cells and contacted with pore water containing radioactive neptunium or plutonium. Other samples of clay were transferred to test tubes where a suspension of this material with pore water and the radioactive elements was agitated and centrifuged and then analyzed by highly sensitive mass spectrometers in order to determine the sorption characteristics of the clay material. Afterwards, the samples were transported to the particle accelerators in Grenoble, Karlsruhe, and at the Paul Scherrer Institute in Switzerland, where they were investigated by beams of synchrotron radiation with a width of only 0.0015 millimeters. “This provides us with detailed information on the distribution of the elements, and where and how the elements are sorbed on the clay material,” explains Reich.

The batch experiments show that radioactive plutonium in the oxidation state IV is nearly totally sorbed on Opalinus Clay, leaving almost no plutonium in the aqueous solution. In the case of neptunium(V), the corresponding ratio is 60:40. However, if neptunium is reduced to neptunium(IV) by iron minerals present in the clay, a near 100 percent sorption of neptunium on the clay is observed. The diffusion experiments using “radioactive” water have demonstrated that water passes through a clay cylinder with a thickness of 1.1 centimeters within a week. Neptunium, on the other hand, hardly diffuses through the clay, and even after a month it is still almost where it started.

Thin, millimeter-wide sections of the clay disks also show which chemical reactions of the radioactive elements occur as they pass through the clay material: Plutonium(VI) is reduced during its passage through the clay cylinder and is recovered as plutonium(IV). “This is a great advantage, as plutonium(IV) stays where it is put.” Professor Reich and his research team also discovered what is responsible for the sorption of the radioactive substances: It is predominantly the clay minerals, while the iron minerals responsible for the reduction process are only of minor importance in this connection.

Opalinus Clay, which occurs not only in Switzerland but also in Southern Germany, thus appears to be an excellent candidate for further investigation on the migration of long-lived radionuclides – neptunium, for example, has a half-life of 2.14 million years. The Mainz team of nuclear chemists had previously reported similar results using the clay mineral kaolinite from the United States of America. “In the meantime we have developed the necessary equipments and have defined the experimental processes required,” Reich summarizes the outcome of the experiments with Opalinus Clay. Over the coming three years, he and his team plan to investigate the behavior of clay in the presence of higher salt concentrations.

The studies are being conducted as part of a project initiated by the German Federal Ministry of Economics and Technology in 1995 to find a suitable location for a nuclear waste repository. Eight research institutions are participating in the joint project entitled “Interaction and transport of actinides in natural claystone, under consideration of humic substances and organic clay materials” to investigate to what extent Opalinus Clay could be a suitable host rock for the permanent disposal of highly radioactive waste.

The Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz came out in 1972 from the Institute of Inorganic Chemistry and Nuclear Chemistry. It currently employs some 100 personnel. The institute operates one of three research reactors in Germany.

PUBLICATIONS:

T. Wu, S. Amayri, J. Drebert, L.R. Van Loon, T. Reich
Neptunium(V) sorption and diffusion in Opalinus Clay
Environ. Sci. Technol. 49 (2009) 6567
D.R. Fröhlich, S. Amayri, J. Drebert, T. Reich
Sorption of neptunium(V) on Opalinus Clay under aerobic/anaerobic conditions
Radiochim. Acta 99 (2011) 71

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14054.php

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>