Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Opalinus Clay as a potential host rock for nuclear waste repositories

08.03.2011
Nuclear chemists at Johannes Gutenberg University Mainz, Germany, are investigating the interaction between radioactive elements such as plutonium and clay stones

Scientists at Johannes Gutenberg University Mainz (JGU), Germany, have studied natural claystone in the laboratory for more than four years in order to determine how the radioactive elements plutonium and neptunium react with this rock.

The experiments have been performed as part of a Germany-wide project sponsored by the Federal Ministry of Economics and Technology (BMWi) to find a suitable geological repository for radioactive waste. Geological configurations that could play a role for the permanent disposal of nuclear waste include not only salt and granite formations, but also claystone. The results obtained by the team of nuclear chemists under the supervision of Professor Tobias Reich confirm that natural clay has certain useful properties that counteract the migration of radioactive materials. Professor Reich, director of the Institute of Nuclear Chemistry at Mainz University, summarizes the results obtained so far as follows: „It does seem that clay could be suitable as host rock, although we still need to wait for the outcome of long-term investigations.“

The cylinders of clay used by the Mainz team of nuclear chemists have come a long way: Cores of Opalinus Clay were obtained by drilling in the Underground Rock Laboratory Mont Terri in the Swiss Jura mountains. This clay formation was deposited some 180 million years ago. In Switzerland, Opalinus Clay is being considered as a rock formation for the storage of radioactive waste. The bore cores were first transferred to the Institute for Nuclear Waste Disposal (INE) in Karlsruhe, Germany, where they were cut in small round disks with a thickness of 11 millimeters. At the Institute of Nuclear Chemistry in Mainz, these clay disks were packed in diffusion cells and contacted with pore water containing radioactive neptunium or plutonium. Other samples of clay were transferred to test tubes where a suspension of this material with pore water and the radioactive elements was agitated and centrifuged and then analyzed by highly sensitive mass spectrometers in order to determine the sorption characteristics of the clay material. Afterwards, the samples were transported to the particle accelerators in Grenoble, Karlsruhe, and at the Paul Scherrer Institute in Switzerland, where they were investigated by beams of synchrotron radiation with a width of only 0.0015 millimeters. “This provides us with detailed information on the distribution of the elements, and where and how the elements are sorbed on the clay material,” explains Reich.

The batch experiments show that radioactive plutonium in the oxidation state IV is nearly totally sorbed on Opalinus Clay, leaving almost no plutonium in the aqueous solution. In the case of neptunium(V), the corresponding ratio is 60:40. However, if neptunium is reduced to neptunium(IV) by iron minerals present in the clay, a near 100 percent sorption of neptunium on the clay is observed. The diffusion experiments using “radioactive” water have demonstrated that water passes through a clay cylinder with a thickness of 1.1 centimeters within a week. Neptunium, on the other hand, hardly diffuses through the clay, and even after a month it is still almost where it started.

Thin, millimeter-wide sections of the clay disks also show which chemical reactions of the radioactive elements occur as they pass through the clay material: Plutonium(VI) is reduced during its passage through the clay cylinder and is recovered as plutonium(IV). “This is a great advantage, as plutonium(IV) stays where it is put.” Professor Reich and his research team also discovered what is responsible for the sorption of the radioactive substances: It is predominantly the clay minerals, while the iron minerals responsible for the reduction process are only of minor importance in this connection.

Opalinus Clay, which occurs not only in Switzerland but also in Southern Germany, thus appears to be an excellent candidate for further investigation on the migration of long-lived radionuclides – neptunium, for example, has a half-life of 2.14 million years. The Mainz team of nuclear chemists had previously reported similar results using the clay mineral kaolinite from the United States of America. “In the meantime we have developed the necessary equipments and have defined the experimental processes required,” Reich summarizes the outcome of the experiments with Opalinus Clay. Over the coming three years, he and his team plan to investigate the behavior of clay in the presence of higher salt concentrations.

The studies are being conducted as part of a project initiated by the German Federal Ministry of Economics and Technology in 1995 to find a suitable location for a nuclear waste repository. Eight research institutions are participating in the joint project entitled “Interaction and transport of actinides in natural claystone, under consideration of humic substances and organic clay materials” to investigate to what extent Opalinus Clay could be a suitable host rock for the permanent disposal of highly radioactive waste.

The Institute of Nuclear Chemistry at Johannes Gutenberg University Mainz came out in 1972 from the Institute of Inorganic Chemistry and Nuclear Chemistry. It currently employs some 100 personnel. The institute operates one of three research reactors in Germany.

PUBLICATIONS:

T. Wu, S. Amayri, J. Drebert, L.R. Van Loon, T. Reich
Neptunium(V) sorption and diffusion in Opalinus Clay
Environ. Sci. Technol. 49 (2009) 6567
D.R. Fröhlich, S. Amayri, J. Drebert, T. Reich
Sorption of neptunium(V) on Opalinus Clay under aerobic/anaerobic conditions
Radiochim. Acta 99 (2011) 71

Petra Giegerich | idw
Further information:
http://www.uni-mainz.de/eng/14054.php

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>