Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ONR Scientist Generates 'Mud Power' for NPR Radio Audience

07.05.2010
Dr. Linda Chrisey, a leading scientist at the Office of Naval Research, discussed how researchers are generating electricity from bacteria found in mud and wastewater during National Public Radio's recent "Science Friday" segment.

"We're in the process of testing the utility of the microbial fuel cell to power different types of sensors that are of value to us," said Chrisey, a program officer for ONR's Naval Biosciences and Biocentric Technology Program.

"What we'd like to do is be able to persistently power sensors so that, instead of putting a diver in the water to change a battery, which would happen with some frequency, we could put a device in the water and allow it to sustainably operate for months or even years."

Interviewed on April 30 by Ira Flatow, host of "Science Friday," Chrisey said a continuously powered device could have several other practical, nonmilitary applications, such as powering underwater microphones that capture seismic activity underwater or monitoring the movements of marine wildlife. Watch a video | Download a fact sheet

"A D-cell battery has about one watt of energy, or enough to run continuously for about an hour," she told Flatow. "A microbial fuel cell could provide that same energy continuously for nine months, 12 months or even longer. And that amount of power is sufficient to power some of the sensors and sensor networks that the Navy is interested in."

By harnessing the electrical charge inherent in the movement of Geobacter bacteria, the device offers an efficient, clean and reliable alternative to batteries and other environmentally harmful fuel sources, Chrisey said.

"The Office of Naval Research's investment in biological research is an important part of the Department of Defense's portfolio of programs to develop breakthrough technologies. These technologies will address the capability gaps faced by the department," said Zachary Lemnios, director of defense research and engineering for the Department of Defense. "Dr. Chrisey's work in the biosciences is advancing not only our understanding of the natural world around us, but also equipping us with an impressive catalog of knowledge that has applications in autonomous systems, medical treatment, environmental conservation and more."

ONR has collaborated on the microbial fuel cell's development with researchers and scientists at the Naval Research Laboratory, the University of Massachusetts at Amherst, iRobot, Montana State University, Naval Undersea Warfare Center, Oregon State University, Scribner Association, the Space and Naval Warfare Systems Center Pacific, Teledyne Scientific Imaging, University of Minnesota and Washington State University.

"Science Friday" is a nationally syndicated two-hour talk show that explores the biggest news in the science community. Expert guests regularly discuss science-related topics and field questions from listeners.

About the Office of Naval Research
The Department of the Navy's Office of Naval Research provides the science and technology necessary to maintain the Navy and Marine Corps' technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning, and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel.

Peter Vietti | EurekAlert!
Further information:
http://www.navy.mil

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>