Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

ONR Scientist Generates 'Mud Power' for NPR Radio Audience

07.05.2010
Dr. Linda Chrisey, a leading scientist at the Office of Naval Research, discussed how researchers are generating electricity from bacteria found in mud and wastewater during National Public Radio's recent "Science Friday" segment.

"We're in the process of testing the utility of the microbial fuel cell to power different types of sensors that are of value to us," said Chrisey, a program officer for ONR's Naval Biosciences and Biocentric Technology Program.

"What we'd like to do is be able to persistently power sensors so that, instead of putting a diver in the water to change a battery, which would happen with some frequency, we could put a device in the water and allow it to sustainably operate for months or even years."

Interviewed on April 30 by Ira Flatow, host of "Science Friday," Chrisey said a continuously powered device could have several other practical, nonmilitary applications, such as powering underwater microphones that capture seismic activity underwater or monitoring the movements of marine wildlife. Watch a video | Download a fact sheet

"A D-cell battery has about one watt of energy, or enough to run continuously for about an hour," she told Flatow. "A microbial fuel cell could provide that same energy continuously for nine months, 12 months or even longer. And that amount of power is sufficient to power some of the sensors and sensor networks that the Navy is interested in."

By harnessing the electrical charge inherent in the movement of Geobacter bacteria, the device offers an efficient, clean and reliable alternative to batteries and other environmentally harmful fuel sources, Chrisey said.

"The Office of Naval Research's investment in biological research is an important part of the Department of Defense's portfolio of programs to develop breakthrough technologies. These technologies will address the capability gaps faced by the department," said Zachary Lemnios, director of defense research and engineering for the Department of Defense. "Dr. Chrisey's work in the biosciences is advancing not only our understanding of the natural world around us, but also equipping us with an impressive catalog of knowledge that has applications in autonomous systems, medical treatment, environmental conservation and more."

ONR has collaborated on the microbial fuel cell's development with researchers and scientists at the Naval Research Laboratory, the University of Massachusetts at Amherst, iRobot, Montana State University, Naval Undersea Warfare Center, Oregon State University, Scribner Association, the Space and Naval Warfare Systems Center Pacific, Teledyne Scientific Imaging, University of Minnesota and Washington State University.

"Science Friday" is a nationally syndicated two-hour talk show that explores the biggest news in the science community. Expert guests regularly discuss science-related topics and field questions from listeners.

About the Office of Naval Research
The Department of the Navy's Office of Naval Research provides the science and technology necessary to maintain the Navy and Marine Corps' technological advantage. Through its affiliates, ONR is a leader in science and technology with engagement in 50 states, 70 countries, 1,035 institutions of higher learning, and 914 industry partners. ONR employs approximately 1,400 people, comprising uniformed, civilian and contract personnel.

Peter Vietti | EurekAlert!
Further information:
http://www.navy.mil

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>