Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

One simple molecule regulates sexual behavior in Drosophila

20.05.2015

Scientists from the Max Planck Institute for Chemical Ecology in Jena, Germany, identify methyl laurate as Drosophila melanogaster sex pheromone. This relatively simple molecule is able to regulate complex mating behavior in vinegar flies.

The common vinegar fly Drosophila melanogaster is a very well-studied animal. For decades, the fly has been used as a model organism in genetic research; its genome was fully sequenced in 2000.


Markus Knaden and Hany Dweck prepare a mating experiment with vinegar flies.

Anna Schroll

However, until now researchers have failed to identify the specific pheromone in this species that leads to mating success. Although the pheromones that inhibit mating in Drosophila were known, the positive pheromone signal that elicits courtship behavior and mating remained a mystery.

Scientists from the Max Planck Institute for Chemical Ecology in Jena, Germany, have succeeded in identifying a relatively simple molecule that is able to regulate complex mating behavior in vinegar flies: a fatty acid methyl ester called methyl laurate. Verification was a result of the combination of state-of-the-art chemical analytic techniques, physiological measurements in the fly brain, and behavioral assays. (Proceedings of the National Academy of Sciences of the United States of America, Mai 2015)

Pheromones are signal molecules that pass information from individuals of one species to their conspecifics. In addition to aggregation pheromones, which prompt insects of the same species to come together, or alarm pheromones, which warn conspecifics about imminent danger, sex pheromones are quite well-known. Female insects emit sex pheromones in order to attract potential mating partners.

The sexual attractant used by female silkworm moths, bombykol, was the first pheromone to be identified and its effect on males proven (this occurred in the late 1950s). Since then various sex pheromones in other insect species have been identified. Pheromones have also been used successfully for pest control purposes: the female attractant is employed as bait to lure males into pheromone traps. Yet the female sex pheromone − the signal molecule which attracts males and triggers mating behavior − of the vinegar fly Drosophila melanogaster remained until recently unidentified.

Hany Dweck, Markus Knaden, Bill Hansson and their colleagues in the Department of Evolutionary Neuroethology started their research by making a mistake: They had assumed that the odor of virgin females was especially attractive to males and were therefore looking for odors that are exclusively found in unmated females. However, these studies did not in the end help identify the substance that would trigger mating behavior.

Physiological and genetic data indicated that the flies must have a neuron type that responds to a specific, yet unidentified, compound within odor collections from flies. When this neuron type, which expresses the specific olfactory receptor Or47b, was missing, mating behavior in males was inhibited. Therefore Hany Dweck started to collect odors from thousands of vinegar flies, not only from virgin females but also from mated females and even males.

In order to analyze single odor components, he used the new technique of Thermal Desorption GC-MS. This combination of gas chromatography (GC) and mass spectrometry (MS) also uses the advantages of thermal desorption, which help to measure and identify even the tiniest amounts of volatile substances. Hany Dweck then performed electrophysiological measurements to test all identified compounds with respect to their ability to activate the pheromone-specific neuron.

From all tested volatile compounds vinegar flies emit, only one substance triggered a strong response in this neuron: methyl laurate, a substance which analyses revealed to have a relatively plain molecule structure. “From our perspective as chemists, we were almost disappointed that a molecule which conveys something important as sex has such a simple structure,” says Aleš Svatoš, who performed the chemical analyses to identify the pheromone.

Methyl laurate occurs not only in virgin females but also in mated females and even male flies. The compound is detected by a neuron which expresses the olfactory receptor Or47b; this receptor responds exclusively to methyl laurate. In males, methyl laurate triggers courtship behavior. The odor of virgin females is most attractive to males, because during mating males transfer the male-specific pheromone cis-vaccenyl acetate to females, making these mated females unattractive to other males.

Methyl laurate is also detected by another sensory neuron type that expresses the olfactory receptor Or88a. Flies which lack the olfactory receptor Or47b are still attracted by the odor of other flies; however, their mating behavior is considerably reduced. Flies which lack the olfactory receptor Or88a are no longer attracted to fly-specific odors; however, their mating behavior is uninhibited. “The novel pheromone activates two different circuits: one is involved in courtship and mating of males and females, the other one in aggregation,” Markus Knaden, who led the studies, explains.

Interestingly, the scientists were able to show the presence of methyl laurate in all tested Drosophila species. Furthermore, the same pheromone-specific neuron types which activate the olfactory receptors Or47b or Or88a respond to methyl laurate. Methyl laurate transmits a positive mating signal that seems to be conserved within many drosophilid flies. In order to circumvent hybridization, each species seems to carry species-specific cuticular hydrocarbons that inhibit mating.

The close collaboration of scientists from different disciplines was the secret of this successful basic research project. “Our study would not have been possible without this interdisciplinary approach. It is great that we can combine the results of different techniques, chemical analytics, electrophysiological measurements, imaging methods and last but not least behavioral assays. We can team up and make such a comprehensive and exciting story out of it,” says Bill Hansson, director of the Department of Evolutionary Neuroethology.

In further experiments, the scientists want take a closer look at the compound methyl laurate. They are particularly interested in knowing whether the fly produces the substance itself or whether symbiotic bacteria may be involved in its production. [AO]

Original Publication:
Dweck, H. K. M., Ebrahim, S. A. M., Thoma, M., Mohamed, A. A. M., Keesey, I. W., Trona, F., Lavista-Llanos, S., Svatoš, A., Sachse, S., Knaden, M., Hansson, B. S. (2015). Novel pheromones mediate copulation and attraction in Drosophila. Proceedings of the National Academy of Sciences of the United States of America. DOI 10.1073/pnas.1504527112
http://dx.doi.org/10.1073/pnas.1504527112

Further Information:
Markus Knaden, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1421, mknaden@ice.mpg.de
Bill S. Hansson, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, +49 3641 57-1401, hansson@ice.mpg.de


Contact and Picture Requests:
Angela Overmeyer M.A., Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07743 Jena, Germany, +49 3641 57-2110, E-Mail overmeyer@ice.mpg.de

Download of high resolution images via http://www.ice.mpg.de/ext/downloads2015.html

Weitere Informationen:

http://www.ice.mpg.de/ext/1208.html?&L=0
http://www.ice.mpg.de/ext/evolutionary-neuroethology.html?&L=0 (Department of Evolutionary Neuroethology)
http://www.ice.mpg.de/ext/627.html (Project Group "Odor-guided Behavior")

Angela Overmeyer | Max-Planck-Institut für chemische Ökologie

More articles from Life Sciences:

nachricht Newly designed molecule binds nitrogen
23.02.2018 | Julius-Maximilians-Universität Würzburg

nachricht Atomic Design by Water
23.02.2018 | Max-Planck-Institut für Eisenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>