Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oncolytic viruses for targeted attack on cancer stem cells generated

07.01.2013
Scientists at the Paul-Ehrlich-Institut (PEI) have successfully created oncolytic viruses which effectively target CD133-positive cancer stem cells to infect and kill them. In animal experiments, multiple tumour foci could be completely eradicated. Cancer Research reports on the results of this research in its online edition of 4th January (Friday afternoon).
Tumours do not consist of homogenous cell populations but contain cancer stem cells which respond poorly to chemotherapy and radiotherapy and are considered to be responsible for metastatic tumours. Scientists have therefore stepped up their efforts to find ways of identifying and eliminating these "tumour-initiating cells".

The cell surface protein CD133 is currently discussed as a characteristic marker for such cancer stem cells. The PEI President’s Research Group "Molecular Biotechnology and Gene therapy" led by Professor Christian Buchholz has modified an attenuated and thus innocuous measles virus for the targeted attack on cancer stem cells. The modified virus requires the surface protein CD133 as receptor for penetration into the cell. The scientists were able to prove that the modified virus infects only CD133-positive tumor cells even when these are cultivated in close contact with CD133-negative cells.

In collaboration with Heidelberg University and the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), the Paul-Ehrlich-Institut’s scientists tested the anti-tumoural effect of their targeted virus using mouse models reflecting glioma, colon carcinoma, and liver cancer. The modified virus showed pronounced anti-tumoural activity in all animal models tested – the tumour growth was substantially reduced or even entirely suppressed. The scientists compared the effectiveness of their modified oncolytic measles virus with that of an oncolytic measles virus currently investigated in clinical trials which does not show any specificity for subtypes of tumour cells. "We were surprised that the CD133-specific virus showed an anti-tumoural activity which was at least as good as that of the standard virus. In the liver cancer model, the anti-tumoural activity was clearly superior and led to complete tumour remission", said Professor Buchholz. In further studies, the research team aims at elucidating why their viruses turned out to be more effective in fighting tumours than conventional oncolytic viruses which are supposed to attack all tumour cell subtypes.

Is it really only cancer cells that are attacked by the CD133-specific virus? In fact, not only cancer stem cells bear the surface marker CD133 but also haematopoietic stem cells. Yet, haematopoietic stem cells were not attacked by the oncolytic measles virus. This is due to the innate immunity of these cells, which protects them from an attack by measles virus. Many tumour cell types exhibit a defect in innate immunity allowing the virus to replicate unimpaired.

One advantage of the use of oncolytic viruses in cancer therapy is their enhancer mechanism. Infected tumor cells produce progeny virus particles which are released upon cell lysis and are able to detect further tumour cells.

Dr. Susanne Stöcker | idw
Further information:
http://cancerres.aacrjournals.org/content/early/2013/01/04/0008-5472.CAN-12-2221.abstract
http://www.pei.de/EN/research/groups/presidents-groups/viral-gene-transfer-medicinal-products/pr1-viral-gene-transfer-medicinal-product

More articles from Life Sciences:

nachricht New Model of T Cell Activation
27.05.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Fungi – a promising source of chemical diversity
27.05.2016 | Leibniz-Institut für Naturstoff-Forschung und Infektionsbiologie - Hans-Knöll-Institut (HKI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>