Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Oncolytic viruses for targeted attack on cancer stem cells generated

07.01.2013
Scientists at the Paul-Ehrlich-Institut (PEI) have successfully created oncolytic viruses which effectively target CD133-positive cancer stem cells to infect and kill them. In animal experiments, multiple tumour foci could be completely eradicated. Cancer Research reports on the results of this research in its online edition of 4th January (Friday afternoon).
Tumours do not consist of homogenous cell populations but contain cancer stem cells which respond poorly to chemotherapy and radiotherapy and are considered to be responsible for metastatic tumours. Scientists have therefore stepped up their efforts to find ways of identifying and eliminating these "tumour-initiating cells".

The cell surface protein CD133 is currently discussed as a characteristic marker for such cancer stem cells. The PEI President’s Research Group "Molecular Biotechnology and Gene therapy" led by Professor Christian Buchholz has modified an attenuated and thus innocuous measles virus for the targeted attack on cancer stem cells. The modified virus requires the surface protein CD133 as receptor for penetration into the cell. The scientists were able to prove that the modified virus infects only CD133-positive tumor cells even when these are cultivated in close contact with CD133-negative cells.

In collaboration with Heidelberg University and the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ), the Paul-Ehrlich-Institut’s scientists tested the anti-tumoural effect of their targeted virus using mouse models reflecting glioma, colon carcinoma, and liver cancer. The modified virus showed pronounced anti-tumoural activity in all animal models tested – the tumour growth was substantially reduced or even entirely suppressed. The scientists compared the effectiveness of their modified oncolytic measles virus with that of an oncolytic measles virus currently investigated in clinical trials which does not show any specificity for subtypes of tumour cells. "We were surprised that the CD133-specific virus showed an anti-tumoural activity which was at least as good as that of the standard virus. In the liver cancer model, the anti-tumoural activity was clearly superior and led to complete tumour remission", said Professor Buchholz. In further studies, the research team aims at elucidating why their viruses turned out to be more effective in fighting tumours than conventional oncolytic viruses which are supposed to attack all tumour cell subtypes.

Is it really only cancer cells that are attacked by the CD133-specific virus? In fact, not only cancer stem cells bear the surface marker CD133 but also haematopoietic stem cells. Yet, haematopoietic stem cells were not attacked by the oncolytic measles virus. This is due to the innate immunity of these cells, which protects them from an attack by measles virus. Many tumour cell types exhibit a defect in innate immunity allowing the virus to replicate unimpaired.

One advantage of the use of oncolytic viruses in cancer therapy is their enhancer mechanism. Infected tumor cells produce progeny virus particles which are released upon cell lysis and are able to detect further tumour cells.

Dr. Susanne Stöcker | idw
Further information:
http://cancerres.aacrjournals.org/content/early/2013/01/04/0008-5472.CAN-12-2221.abstract
http://www.pei.de/EN/research/groups/presidents-groups/viral-gene-transfer-medicinal-products/pr1-viral-gene-transfer-medicinal-product

More articles from Life Sciences:

nachricht Rapid adaptation to a changing environment
28.04.2016 | Christian-Albrechts-Universität zu Kiel

nachricht Tiny microscopes reveal hidden role of nervous system cells
28.04.2016 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

Im Focus: Measuring the heat capacity of condensed light

Liquid water is a very good heat storage medium – anyone with a Thermos bottle knows that. However, as soon as water boils or freezes, its storage capacity drops precipitously. Physicists at the University of Bonn have now observed very similar behavior in a gas of light particles. Their findings can be used, for example, to produce ultra-precise thermometers. The work appears in the prestigious technical journal "Nature Communications".

Water vapor becomes liquid under 100 degrees Celsius – it condenses. Physicists speak of a phase transition. In this process, certain thermodynamic...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Possible Extragalactic Source of High-Energy Neutrinos

28.04.2016 | Physics and Astronomy

University of Illinois researchers create 1-step graphene patterning method

28.04.2016 | Materials Sciences

Rapid adaptation to a changing environment

28.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>