Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

On the Track of Nanomaterials

17.08.2015

Researchers pave the way for realistic risk assessment of nanomaterials in the environment

A wide range of industrially synthesized nanomaterials are present in products we use daily and, in the meantime, are part of our everyday life. Due to their exceptional properties (e. g., increased UV-filtration or stronger adhesion) they are used in clothes, cosmetics, household goods and paints. But where do these particles, each measuring just a few millionths of a millimeter, end up? What impact do they have on humans and the environment? How dangerous are they really?


TEM image of adipogenic differentiated stem cell. T: untreated (= without nanoparticles ). B: Cell after treatment with gold nanoparticles. Particles accumulate in the lipid droplets of cell.

Fraunhofer IBMT


Project Logo

In order to find answers to these questions, 11 partners from business and science, as well as Federal and State authorities are developing new, innovative methods for precise and safe evaluation of nanomaterial contamination and the resulting risk potential for humans and the environment within the framework of the project "NanoUmwelt: risk analysis of engineered nanomaterials in the environment".

Dirt-resistant clothes, antibacterial-coated kitchenware, instant soup powder, sunscreen or scratchproof coatings; all these products have one thing in common: increasingly, they contain nanomaterials whose whereabouts and impact on the environment remain unclear. Nanomaterials (Greek nannos = dwarf) are interesting due to their small size and the associated variable physical and chemical properties which give rise to new functionalities.

One nanoparticle measures less than a 100 millionth of a millimeter, and is thus 1,000 times thinner than a human hair. Due to the many gaps in our knowledge, the risk emanating from nanomaterials could only be assessed insufficiently up to now. The end of the life cycle of nanomaterials is largely unclear. "Many experts have concerns about the introduction of nanomaterials to the environment," explains Yvonne Kohl, PhD, deputy project coordinator and project manager at the Fraunhofer Institute for Biomedical Engineering IBMT.

With new technologies to safer nano-products - NanoUmwelt – a project for risk analysis of synthetic nanomaterials in the environment

To assess the risk of synthetic nanomaterials on humans and the environment, the research project "NanoUmwelt" was started in October 2014. "NanoUmwelt" is a national project, coordinated by Postnova Analytics GmbH with ten other partners. Alongside the Fraunhofer-Gesellschaft, making a major contribution with two institutes, the Federal Environment Agency, the Empa (Swiss Federal Laboratories for Materials Science and Technology), PlasmaChem GmbH, Senova – Gesellschaft für Biowissenschaft und Technik mbH, the Forschungszentrum für Medizintechnik und Biotechnologie FZMB GmbH as well as the universities of Trier and Frankfurt and the Rheingütestation Worms are involved. The project will take 36 months and is funded with 1.8 million Euro by the German Federal Ministry for Education and Research (BMBF) within the framework of the "NanoCare" program. The interdisciplinary research project "NanoUmwelt" deals with the question of the life cycle of nanomaterials, their accumulation and toxicology.

"The goal is to quantify the introduction of synthetic nanomaterials into different environmental compartments, e. g., soil, sewage sludge, flowing water, soil-dwelling organisms, shellfish, fish, and in human samples (blood and urine), and to characterize their manifestation in the respective environment," says Yvonne Kohl. Moreover, highly sensitive methods will be developed for detecting smallest amounts of nanomaterials in environmental and human samples. The investigation will be complemented by environmental and human-toxicological studies in the low-dose range with the main focus on the interaction of the nanomaterials with biological interfaces and barriers.

The Fraunhofer IBMT is making a major contribution to this project in pursuing the question as to the effects on humans and the environment of long-term exposure to low doses of nanomaterials. For this purpose, the scientists of the Fraunhofer IBMT collect environmental samples of functionally relevant ecosystem compartments and develop methods for standardized preparation of the organic material for analysis and long-term storage at -80°C. In order to take into account man as part of the environment, the Fraunhofer researchers are developing an online questionnaire for the identification of potential nanoparticle exposures and, in close collaboration with the Federal Environment Agency, collecting blood and urine samples from young adults. With the aid of these samples, project partners develop sensitive analytical methods to determine to which types of material and in which concentrations humans and the German population and environment are exposed. Furthermore, the Fraunhofer IBMT will develop new models for investigating human-toxic effects of nanomaterials in the low-dose range, and investigate the barrier transfer of nanomaterials (overcoming the lung and the gastrointestinal barrier) to draw conclusions about the nanoparticle uptake in the human body.

"The aim is the quantification of the tiniest amounts of nanomaterials in environmental and human samples and their toxicological assessment," explains Yvonne Kohl. To achieve the project goal, a new approach was chosen: physical and chemical material investigations regarding stability, mobility, functionality and reactivity in the human and environmental samples will be directly linked to biological investigations in the low-dose range. As well as detecting and quantifying nanomaterials at various points of functionally relevant ecosystem compartments, the participating scientists are also investigating the interaction of nanomaterials with biological barriers, including the lung and other barriers such as the human placenta and the gastrointestinal tract.

Since October 2014, scientists from Germany and Switzerland have been tracking down synthetic nanomaterials. The multidisciplinary formation of the team and the variety of technical expertise enable the development of the urgently needed analysis strategies regarding the life cycle of nanomaterials, their accumulation in the environment and nanotoxicology, which are essential for a safe and reliable assessment, prediction and evaluation of risk.

The results of the project "NanoUmwelt" go into the BMBF database "DaNa 2.0 – Data and knowledge on nanomaterials", which makes quality-assured scientific data available to the public in a generally comprehensive manner.

For further information on the project, which is listed under the BMBF-funding code 03X0150, go to www.nanopartikel.info

Project duration: 01/10/2014 – 30/09/2017

Contact:

Dr. Yvonne Kohl (deputy project coordinator)
Fraunhofer-Institut für Biomedizinische Technik IBMT
Joseph-von-Fraunhofer-Weg 1
66280 Sulzbach
Germany
Telephone: +49 6897/9071-256
E-mail: yvonne.kohl@ibmt.fraunhofer.de

Project partners:

Postnova Analytics GmbH
Umweltbundesamt
Empa, Swiss Federal Laboratories for Materials Science and Technology
PlasmaChem GmbH
Universität Frankfurt, Institut für Molekulare Biowissenschaften
Rheingütestation Worms
Fraunhofer-Institut für Molekularbiologie und Angewandte Ökologie IME
Universität Trier, Fachbereich Raum- und Umweltwissenschaften
Senova – Gesellschaft für Biowissenschaft und Technik mbH
Forschungszentrum für Medizintechnik und Biotechnologie

Weitere Informationen:

http://www.ibmt.fraunhofer.de
http://www.ibmt.fraunhofer.de/en/Fields-of-work/ibmt-cellbiology-applied-virolog...

Annette Maurer | Fraunhofer-Institut für Biomedizinische Technik IBMT

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>