Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Olfactory bulb glial cell transplant preserves muscles in paraplegic rats

Researchers from the “Centro de Biología Molecular Severo Ochoa” (CSIC-UAM), Córdoba University and the “Instituto de Biomedicina de Valencia” (CSIC) have analysed the degree of preservation in the skeletal muscles of paraplegic rats treated with a transplant of Olfactory bulb glial cells (OBG).

Spinal chord injuries represent a serious and irreversible handicap that is sadly frequent in our society. Because of the permanent break in the nervous connections between the brain and the organs and muscles, such injuries impair their movement inducing atrophy and deterioration while they disturb organic functions.

The pioneering studies carried out by Santiago Ramón y Cajal established that while nerve cells from the peripheral nervous system (PNS) have the capacity to repair themselves, the same does not apply to adult brain cells and spinal cord cells from the central nervous system (CNS). The difference is not in the nerve cells themselves but in the cellular enviroment that gives them support - the glial cells. These cells are involved in the transmision of nerve impulses and produce myelin. Schwann cells (a variety of glial cell) in the peripheral nervous system (PNS) provide factors that contribute to the regeneration of the axons whereas the glia of the CNS do not have such a nurturing role. For this reason, one of the strategic experimental approaches for the regeneration of spinal chord neurons consists in altering their cellular enviroment by introducing cells that create a supportive environment for axon regeneration in the damaged area. The glial cells that surround the axons in the olfactory bulb (OBG) are a promising example because they promote axon regeneration in the CNS.

In an experiment using paraplegic rats, it was found that 8 months after a transplant treatment in a transected spinal chord using OBS, axon regeneration was taking place and sensorial and motor recovery was perceived in behavioural tests. The investigation recently published in the Journal of Physiology (London) [J Physiol 586.10 (2008) pp 2593–2610], with the collaboration of scientists from the “Centro de Biología Molecular Severo Ochoa” (CSIC-UAM), Córdoba University, and the “Instituto de Biomedicina de Valencia” (CSIC), has analysed for the first time the muscular characteristics of paraplegic animals treated with an OBG transplant and compared them with those of untreated paraplegic animals and healthy control animals.

The study exhibits a high correlation between the functional capability shown by the animals in behavioural tests and some biochemical parameters. The parameters measured differentiate the muscular characteristics of paraplegic and healthy animals and they established that animals treated with the transplant had more similar characteristics to the healthy animals than the untreated paraplegic animals. In spite of the global effect of OBG transplants, only 3 of the 9 treated animals (and none of the untreated) showed near normal muscle characteristics. This could imply that maintaining the muscular phenotype might rely on the interaction between the transplanted cells and other factors.

One the possible factors that affect the result could be the physical exercise to which the animals were subjected. This could be significant since it is well known that rehabilitation treatment aids regenerative therapies. Both voluntary and assisted exercise stimulates synaptic plasticity and the regenerative capabilities of neurons of the CNS as well as re-establishes adequate trophic factors. The role of the OBG in establishing a nurturing cellular environment for axon regeneration could induce adaptation in the local spinal circuits that favours the conservation of muscular properties and automatic contractions even while the damaged neural pathways are not fully recovered.

Oficina de Cultura Científica | alfa
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

How nanoscience will improve our health and lives in the coming years

27.10.2016 | Materials Sciences

OU-led team discovers rare, newborn tri-star system using ALMA

27.10.2016 | Physics and Astronomy

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

More VideoLinks >>>