Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Older dental fillings contain form of mercury unlikely to be toxic

10.12.2009
A new study on the surface chemistry of silver-colored, mercury-based dental fillings suggests that the surface forms of mercury may be less toxic than previously thought. It appears online in ACS' journal Chemical Research in Toxicology.

In the study, Graham George and colleagues note that mercury-based fillings, also called amalgams, have been used by dentists to repair teeth for well-over a century.

In recent decades their use has become controversial because of concerns about exposure to potentially toxic mercury. However, mercury can potentially exist in several different chemical forms, each with a different toxicity. Prior to this report, little was known about how the chemical forms of mercury in dental amalgam might change over time.

Using a special X-ray technique, the scientists analyzed the surface of freshly prepared metal fillings and compared these with the surface of aged fillings (about 20 years old) from a dental clinic. Fresh fillings contained metallic mercury, which can be toxic. Aged fillings, however, typically contain a form of mercury, called beta-mercuric sulfide or metacinnabar, which is unlikely to be toxic in the body. The scientists found that the surfaces of metal fillings seem to lose up to 95 percent of their mercury over time. Loss of potentially toxic mercury from amalgam may be due to evaporation, exposure to some kinds of dental hygiene products, exposure to certain foods, or other factors. The scientists caution that "human exposure to mercury lost from fillings is still of concern."

ARTICLE FOR IMMEDIATE RELEASE
"The Chemical Forms of Mercury in Aged and Fresh Dental Amalgam Surfaces"
DOWNLOAD FULL TEXT ARTICLE
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/tx900309c
CONTACT:
Professor Graham N. George, D.Phil.
Canada Research Chair in X-ray Absorption Spectroscopy, Departments of Geological Sciences and Anatomy and Cell Biology, 114 Science Place, University of Saskatchewan,
Saskatoon, S7N 5E2, Canada
http://www.usask.ca/geology/nfaculty/gg/intro.htm
E-mail: g.george@usask.ca
Tel: +1-306-966-5722 Fax: +1-306-966-8593

Michael Bernstein | EurekAlert!
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>