Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU team discovers powerful molecule regulator in blood pressure control system

12.03.2010
The research, published in the Journal of Neuroscience Research, sheds light on what determines availability of the molecules involved in blood pressure control

Researchers at Oregon Health & Science University's School of Dentistry (www.ohsu.edu/sod) have discovered that nitric oxide is a powerful regulator of a molecule that plays a critical role in the development and function of the nervous system. The finding could someday play a significant role in the prevention and treatment of high blood pressure, which affects about one in three adults in the United States.

The new discovery is published online (http://www3.interscience.wiley.com/cgi-bin/fulltext/123189946/PDFSTART) and will appear in the May issue of the Journal of Neuroscience Research.

Changes in blood pressure are signaled to the brain by nerve cells called baroreceptors. The OHSU dental school team previously found that baroreceptors make a molecule called brain-derived neurotrophic factor (BDNF), which belongs to the family of neurotrophins that play a critical role in the development and plasticity of other nerve cells.

The OHSU dental school team found that nitric oxide is a potent regulator of BDNF in baroreceptor neurons. Nitric oxide is known for its ability to improve the elasticity of blood vessels and to lower blood pressure. It is the active metabolite of nitroglycerin, which has been used to treat coronary artery disease for more than 100 years. Nitric oxide widens small arteries and counteracts artery stiffening, and several lines of evidence also indicate that its deficiency leads to hypertension.

"This is the first study to show the role of nitric oxide in inhibiting BDNF release from peripheral nerve cells," said Agnieszka Balkowiec, M.D., Ph.D., principal investigator, associate professor of integrative biosciences in the OHSU School of Dentistry, and adjunct assistant professor of physiology and pharmacology in the OHSU School of Medicine. "This finding supports our hypothesis that BDNF is involved in establishing connections in the blood pressure control system and could someday play a significant role in the prevention of high blood pressure."

Additional study authors include Hui-ya Hsieh, B.S.; Carolyn Robertson, M.D.; and Anke Vermehren-Schmaedick, Ph.D.

The study was supported by grants from the American Heart Association and the National Institutes of Health's National Heart, Lung, and Blood Institute, including the American Recovery and Reinvestment Act (ARRA) funds.

Dr. Balkowiec teaches physiology and neuroscience to first-year dental students and is often an invited lecturer in dental school courses on orofacial pain. Since 2004 the dental school has received more than $16.4 million in research funding.

About OHSU

Oregon Health & Science University is the state's only health and research university and Oregon's only academic health center. OHSU is Portland's largest employer and the fourth largest in Oregon (excluding government), with 12,700 employees. OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. It serves patients from every corner of the state, and is a conduit for learning for more than 3,400 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to every county in the state.

Sydney Clevenger | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Bolstering fat cells offers potential new leukemia treatment
17.10.2017 | McMaster University

nachricht Ocean atmosphere rife with microbes
17.10.2017 | King Abdullah University of Science & Technology (KAUST)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Ocean atmosphere rife with microbes

17.10.2017 | Life Sciences

Neutrons observe vitamin B6-dependent enzyme activity useful for drug development

17.10.2017 | Life Sciences

NASA finds newly formed tropical storm lan over open waters

17.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>