Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU researchers develop new drug approach that could lead to cures for wide range of diseases

10.12.2013
A team led by a longtime Oregon Health & Science University researcher has demonstrated in mice what could be a revolutionary new technique to cure a wide range of human diseases — from cystic fibrosis to cataracts to Alzheimer's disease — that are caused by "misfolded" protein molecules.

Misfolded protein molecules, caused by gene mutation, are capable of maintaining their function but are misrouted within the cell and can’t work normally, thus causing disease. The OHSU team discovered a way to use small molecules that enter cells, fix the misfolded proteins and allow the proteins to move to the correct place and function normally again.

The researchers were led by P. Michael Conn, Ph.D., who was a senior scientist in reproductive sciences and neuroscience at OHSU's Oregon National Primate Research Center and professor of physiology and pharmacology, cell biology and development and obstetrics and gynecology at OHSU for the past 19 years. This month, Conn joined Texas Tech University Health Sciences Center as senior vice president for research and associate provost.

The team’s work will be published this week in the early online edition of the Proceedings of the National Academy of Sciences. The work was the culmination of 13 years of work on the process by Conn and Jo Ann Janovick, former senior research associate at the ONPRC who is now also at TTUHSC. Richard R. Behringer, Ph.D., from the University of Texas MD Anderson Cancer Center, M. David Stewart, Ph.D., from the University of Houston, and Douglas Stocco, Ph.D., and Pulak Manna, Ph.D., from the department of biochemistry/microbiology at TTUHSC, also contributed to the work.

Conn and his team perfected the process in mice, curing them of a form of disease that causes males to be unable to father offspring. The identical disease occurs in humans and Conn believes the same concept can work to cure human disease as well.

"The opportunity here is going to be enormous," said Conn, "because so many human diseases are caused by misfolded proteins. The ability of these drugs – called ‘pharmacoperones’ – to rescue misfolded proteins and return them to normalcy could someday be an underlying cure to a number of diseases. Drugs that act by regulating the trafficking of molecules within cells are a whole new way of thinking about treating disease.”

Proteins must fold into three-dimensional shapes in precise ways to do their work within human cells. Before recent discoveries about misfolded proteins, scientists believed that proteins that were inactive were intrinsically non-functional. But work by Conn and others revealed that, when the proteins are misfolded, the cell's "quality control system" misroutes them within the cell and they cease to function only because of that misrouting. Pharmacoperones can fix misfolded proteins and thus make them functional again.

Scientists had in recent years observed this process in cells under a microscope. The work of Conn's team is the first time the process has worked in a living laboratory animal.

“These findings show how valuable laboratory animals are in identifying new treatments for human disease,” said Conn. “We expect that these studies will change the way drug companies look for drugs, since current screening procedures would have missed many useful pharmacoperone drugs.”

A wide range of diseases are caused by an accumulation of misfolded proteins. Among the diseases are neurodegenerative diseases like Alzheimer's disease, Parkinson's disease and Huntington's disease. Other diseases include certain types of diabetes, inherited cataracts and cystic fibrosis.

Conn said the next steps will be clinical trials to see whether the same technique can work in humans.

The research was funded by the National Institutes of Health (grants OD012220 and DK85040), the Ben F. Love Endowment, the American Heart Association, the Texas Heart Institute and the Robert A. Welch Foundation.

About ONPRC

The ONPRC is one of the eight National Primate Research Centers supported by NIH. ONPRC is a registered research institution, inspected regularly by the United States Department of Agriculture. It operates in compliance with the Animal Welfare Act and has an assurance of regulatory compliance on file with the National Institutes of Health. The ONPRC also participates in the voluntary accreditation program overseen by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC).

About OHSU

Oregon Health & Science University is a nationally prominent research university and Oregon’s only public academic health center. It serves patients throughout the region with a Level 1 trauma center and nationally recognized Doernbecher Children’s Hospital. OHSU operates dental, medical, nursing and pharmacy schools that rank high both in research funding and in meeting the university’s social mission.

OHSU’s Knight Cancer Institute helped pioneer personalized medicine through a discovery that identified how to shut down cells that enable cancer to grow without harming healthy ones. OHSU Brain Institute scientists are nationally recognized for discoveries that have led to a better understanding of Alzheimer’s disease and new treatments for Parkinson’s disease, multiple sclerosis and stroke. OHSU’s Casey Eye Institute is a global leader in ophthalmic imaging, and in clinical trials related to eye disease.

Todd Murphy | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

Guardians of the Gate

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>