Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU Oregon National Primate Research Center develops new, safer method for making vaccines

30.05.2012
While vaccines are perhaps medicine's most important success story, there is always room for improvement. Researchers at Oregon Health & Science University's Oregon National Primate Research Center (ONPRC) appear to have done just that.

As explained in a newly published research paper, Mark Slifka, Ph.D., and colleagues have discovered a new method for creating vaccines that is thought to be safer and more effective than current approaches. The research results are published online in the journal Nature Medicine.

"Most vaccines have an outstanding safety record," explained Slifka. "It is important to keep in mind that no medical achievement has saved more lives than the simple act of vaccination. However, for many diseases, we have struggled to develop an effective vaccine. In other cases, vaccines may be protective, but come with rare but serious side effects. For instance, the live oral polio vaccine was very effective at stopping polio outbreaks and transmission, but was also responsible for eight to 10 cases of vaccine-associated polio in the United States each year.

This problem was solved in 2000 when the U.S. switched to a formaldehyde-fixed 'dead' form of the vaccine. Our goal is to make vaccines like these safer and potentially even more effective by pioneering an entirely new approach to vaccine development."

Slifka's approach is remarkable because it is the first to demonstrate that hydrogen peroxide can inactivate viruses for use as vaccines. Although hydrogen peroxide has long been known as an effective antiseptic and is often used to sterilize medical equipment, it was believed that it would be too damaging to be useful in vaccine development. It turns out that this previous notion was incorrect. In fact, peroxide may turn out to be one of the best new approaches to future vaccine design.

In the study published this week, Slifka's lab generated not one, but three vaccines.

"We wanted to demonstrate that this is truly a platform technology and not just a one-hit-wonder," explained Slifka. "For this reason, we chose three unrelated model systems and demonstrated protective vaccine-induced immunity in all three cases."

The three diseases targeted by these viruses are West Nile virus, Lymphocytic choriomeningitis virus (a relative of lassa fever virus, known to cause hemorrhagic fever in Africa) and vaccinia virus (widely known for its previous use in the smallpox vaccine.)

An Oregon-based biotech company, Najít Technologies, Inc., is hoping that these advances in vaccine technology will result not only in new vaccines but also new jobs in the Portland area.

"This new approach really gives a boost to an area of vaccine development that's been stagnant for some time," said Ian Amanna, Ph.D., associate vice president for research at Najít Technologies.

"Because of these advances, we've been increasing our workforce and putting together a group of very talented researchers. In partnership with OHSU, we're excited to have the opportunity to further develop this technology into commercial vaccines that can offer protection for at-risk individuals. These vaccines will not only be important to international travelers, but also to the people living in endemic regions. These places are often in developing countries with limited resources for preparing and testing life-saving vaccines and we are looking forward to the day that we can bring these new vaccines to the countries that need them the most."

Najít Technologies, founded by Slifka and colleagues using methods first discovered at OHSU, hopes to continue working together with academic institutions such as OHSU, ONPRC, and Washington University-St. Louis to create new and better vaccines for some of the world's biggest problems including West Nile virus, yellow fever and dengue hemorrhagic fever.

Grants from the National Institutes of Health and ONPRC supported the research.

Conflict of Interest Statement

OHSU and Dr. Slifka have a financial interest in Najit Technologies, Inc., a company that may have a commercial interest in the results of this research and technology. This potential individual and institutional conflict of interest has been reviewed and managed by OHSU.
About OHSU
Oregon Health & Science University is the state's only health and research university, and only academic health center. As Portland's largest employer, OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. OHSU serves patients from every corner of the state and is a conduit for learning for more than 4,300 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state. OHSU is home to ONPRC, one of the eight National Primate Research Centers in the U.S.
About NTI
Najít Technologies, Inc. is a privately-held vaccine development company founded in 2004. The company is headquartered in Beaverton, OR. The Mission of the company is to develop safe and effective vaccines against infectious diseases of global importance. Some of the information presented here may contain projections or other forward-looking statements regarding the future. These statements are only predictions and are subject to risks and uncertainties that could cause results to differ from those expressed or implied statements.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>