Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU Oregon National Primate Research Center develops new, safer method for making vaccines

30.05.2012
While vaccines are perhaps medicine's most important success story, there is always room for improvement. Researchers at Oregon Health & Science University's Oregon National Primate Research Center (ONPRC) appear to have done just that.

As explained in a newly published research paper, Mark Slifka, Ph.D., and colleagues have discovered a new method for creating vaccines that is thought to be safer and more effective than current approaches. The research results are published online in the journal Nature Medicine.

"Most vaccines have an outstanding safety record," explained Slifka. "It is important to keep in mind that no medical achievement has saved more lives than the simple act of vaccination. However, for many diseases, we have struggled to develop an effective vaccine. In other cases, vaccines may be protective, but come with rare but serious side effects. For instance, the live oral polio vaccine was very effective at stopping polio outbreaks and transmission, but was also responsible for eight to 10 cases of vaccine-associated polio in the United States each year.

This problem was solved in 2000 when the U.S. switched to a formaldehyde-fixed 'dead' form of the vaccine. Our goal is to make vaccines like these safer and potentially even more effective by pioneering an entirely new approach to vaccine development."

Slifka's approach is remarkable because it is the first to demonstrate that hydrogen peroxide can inactivate viruses for use as vaccines. Although hydrogen peroxide has long been known as an effective antiseptic and is often used to sterilize medical equipment, it was believed that it would be too damaging to be useful in vaccine development. It turns out that this previous notion was incorrect. In fact, peroxide may turn out to be one of the best new approaches to future vaccine design.

In the study published this week, Slifka's lab generated not one, but three vaccines.

"We wanted to demonstrate that this is truly a platform technology and not just a one-hit-wonder," explained Slifka. "For this reason, we chose three unrelated model systems and demonstrated protective vaccine-induced immunity in all three cases."

The three diseases targeted by these viruses are West Nile virus, Lymphocytic choriomeningitis virus (a relative of lassa fever virus, known to cause hemorrhagic fever in Africa) and vaccinia virus (widely known for its previous use in the smallpox vaccine.)

An Oregon-based biotech company, Najít Technologies, Inc., is hoping that these advances in vaccine technology will result not only in new vaccines but also new jobs in the Portland area.

"This new approach really gives a boost to an area of vaccine development that's been stagnant for some time," said Ian Amanna, Ph.D., associate vice president for research at Najít Technologies.

"Because of these advances, we've been increasing our workforce and putting together a group of very talented researchers. In partnership with OHSU, we're excited to have the opportunity to further develop this technology into commercial vaccines that can offer protection for at-risk individuals. These vaccines will not only be important to international travelers, but also to the people living in endemic regions. These places are often in developing countries with limited resources for preparing and testing life-saving vaccines and we are looking forward to the day that we can bring these new vaccines to the countries that need them the most."

Najít Technologies, founded by Slifka and colleagues using methods first discovered at OHSU, hopes to continue working together with academic institutions such as OHSU, ONPRC, and Washington University-St. Louis to create new and better vaccines for some of the world's biggest problems including West Nile virus, yellow fever and dengue hemorrhagic fever.

Grants from the National Institutes of Health and ONPRC supported the research.

Conflict of Interest Statement

OHSU and Dr. Slifka have a financial interest in Najit Technologies, Inc., a company that may have a commercial interest in the results of this research and technology. This potential individual and institutional conflict of interest has been reviewed and managed by OHSU.
About OHSU
Oregon Health & Science University is the state's only health and research university, and only academic health center. As Portland's largest employer, OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. OHSU serves patients from every corner of the state and is a conduit for learning for more than 4,300 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state. OHSU is home to ONPRC, one of the eight National Primate Research Centers in the U.S.
About NTI
Najít Technologies, Inc. is a privately-held vaccine development company founded in 2004. The company is headquartered in Beaverton, OR. The Mission of the company is to develop safe and effective vaccines against infectious diseases of global importance. Some of the information presented here may contain projections or other forward-looking statements regarding the future. These statements are only predictions and are subject to risks and uncertainties that could cause results to differ from those expressed or implied statements.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>