Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

OHSU Oregon National Primate Research Center develops new, safer method for making vaccines

30.05.2012
While vaccines are perhaps medicine's most important success story, there is always room for improvement. Researchers at Oregon Health & Science University's Oregon National Primate Research Center (ONPRC) appear to have done just that.

As explained in a newly published research paper, Mark Slifka, Ph.D., and colleagues have discovered a new method for creating vaccines that is thought to be safer and more effective than current approaches. The research results are published online in the journal Nature Medicine.

"Most vaccines have an outstanding safety record," explained Slifka. "It is important to keep in mind that no medical achievement has saved more lives than the simple act of vaccination. However, for many diseases, we have struggled to develop an effective vaccine. In other cases, vaccines may be protective, but come with rare but serious side effects. For instance, the live oral polio vaccine was very effective at stopping polio outbreaks and transmission, but was also responsible for eight to 10 cases of vaccine-associated polio in the United States each year.

This problem was solved in 2000 when the U.S. switched to a formaldehyde-fixed 'dead' form of the vaccine. Our goal is to make vaccines like these safer and potentially even more effective by pioneering an entirely new approach to vaccine development."

Slifka's approach is remarkable because it is the first to demonstrate that hydrogen peroxide can inactivate viruses for use as vaccines. Although hydrogen peroxide has long been known as an effective antiseptic and is often used to sterilize medical equipment, it was believed that it would be too damaging to be useful in vaccine development. It turns out that this previous notion was incorrect. In fact, peroxide may turn out to be one of the best new approaches to future vaccine design.

In the study published this week, Slifka's lab generated not one, but three vaccines.

"We wanted to demonstrate that this is truly a platform technology and not just a one-hit-wonder," explained Slifka. "For this reason, we chose three unrelated model systems and demonstrated protective vaccine-induced immunity in all three cases."

The three diseases targeted by these viruses are West Nile virus, Lymphocytic choriomeningitis virus (a relative of lassa fever virus, known to cause hemorrhagic fever in Africa) and vaccinia virus (widely known for its previous use in the smallpox vaccine.)

An Oregon-based biotech company, Najít Technologies, Inc., is hoping that these advances in vaccine technology will result not only in new vaccines but also new jobs in the Portland area.

"This new approach really gives a boost to an area of vaccine development that's been stagnant for some time," said Ian Amanna, Ph.D., associate vice president for research at Najít Technologies.

"Because of these advances, we've been increasing our workforce and putting together a group of very talented researchers. In partnership with OHSU, we're excited to have the opportunity to further develop this technology into commercial vaccines that can offer protection for at-risk individuals. These vaccines will not only be important to international travelers, but also to the people living in endemic regions. These places are often in developing countries with limited resources for preparing and testing life-saving vaccines and we are looking forward to the day that we can bring these new vaccines to the countries that need them the most."

Najít Technologies, founded by Slifka and colleagues using methods first discovered at OHSU, hopes to continue working together with academic institutions such as OHSU, ONPRC, and Washington University-St. Louis to create new and better vaccines for some of the world's biggest problems including West Nile virus, yellow fever and dengue hemorrhagic fever.

Grants from the National Institutes of Health and ONPRC supported the research.

Conflict of Interest Statement

OHSU and Dr. Slifka have a financial interest in Najit Technologies, Inc., a company that may have a commercial interest in the results of this research and technology. This potential individual and institutional conflict of interest has been reviewed and managed by OHSU.
About OHSU
Oregon Health & Science University is the state's only health and research university, and only academic health center. As Portland's largest employer, OHSU's size contributes to its ability to provide many services and community support activities not found anywhere else in the state. OHSU serves patients from every corner of the state and is a conduit for learning for more than 4,300 students and trainees. OHSU is the source of more than 200 community outreach programs that bring health and education services to each county in the state. OHSU is home to ONPRC, one of the eight National Primate Research Centers in the U.S.
About NTI
Najít Technologies, Inc. is a privately-held vaccine development company founded in 2004. The company is headquartered in Beaverton, OR. The Mission of the company is to develop safe and effective vaccines against infectious diseases of global importance. Some of the information presented here may contain projections or other forward-looking statements regarding the future. These statements are only predictions and are subject to risks and uncertainties that could cause results to differ from those expressed or implied statements.

Jim Newman | EurekAlert!
Further information:
http://www.ohsu.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>