Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ohio State researchers discover hereditary predisposition of melanoma of the eye

16.12.2011
Ohio State University researchers have discovered a hereditary cancer syndrome that predisposes certain people to a melanoma of the eye, along with lung cancer, brain cancer and possibly other types of cancer.

The hereditary cancer syndrome is caused by an inherited mutation in a gene called BAP1, researchers say.

The findings suggest that BAP1 mutations cause the disease in a small subset of patients with hereditary uveal melanoma and other cancers.

Uveal melanoma is a cancer of the eye involving the iris, ciliary body, or choroid, which are collectively known as the uvea. These tumors arise from the pigment cells, also known as melanocytes that reside within the uvea giving color to the eye. This is the most common type of eye tumor in adults.

The findings are reported in the Journal of Medical Genetics.

"We are describing a new cancer genetic syndrome that could affect how patients are treated," said first author Dr. Mohamed H. Abdel-Rahman, researcher at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. "If we know that a patient has this particular gene mutation, we can be more proactive with increased cancer screenings to try to detect these other potential cancers when they are beginning to grow."

Study leader Dr. Frederick H. Davidorf, professor emeritus of ophthalmology at Ohio State University, explained that BAP1 seems to play an important role in regulating cell growth and proliferation, and that loss of the gene helps lead to cancer.

"If our results are verified, it would be good to monitor these patients to detect these cancers early when they are most treatable," said Davidorf, who treats ocular oncology patients at Ohio State along with researcher and physician Dr. Colleen Cebulla.

The study involved 53 unrelated uveal melanoma patients with high risk for hereditary cancer, along with additional family members of one of the study participants. Of the 53 patients in the study, researchers identified germline variants in BAP1 in three patients.

"We still don't know exactly the full pattern of cancers these patients are predisposed to, and more studies are needed," said Abdel-Rahman, also an assistant professor of ophthalmology and division of human genetics at Ohio State University College of Medicine.

"So far, we've identified about six families with this hereditary cancer syndrome. We are working with researchers at Nationwide Children's Hospital to develop a clinical test to screen for the BAP1 gene mutation," he said. "Families with this cancer syndrome should be screened for inherited mutations that increase their risk for developing several other cancers."

Other Ohio State researchers involved in the study include Robert Pilarski, James B. Massengill, Benjamin N. Christopher and Getachew Boru, along with Peter Hovland of the Colorado Retina Associates in Denver.

Funding from the Patti Blow Research Fund in Ophthalmology and the American Cancer Society supported this research.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State's cancer program as "exceptional," the highest rating given by NCI survey teams. As the cancer program's 210-bed adult patient-care component, The James is a "Top Hospital" as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S. News & World Report.

Eileen Scahill | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

Uncovering decades of questionable investments

18.01.2018 | Business and Finance

Novel chip-based gene expression tool analyzes RNA quickly and accurately

18.01.2018 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>