Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ohio State researchers discover hereditary predisposition of melanoma of the eye

16.12.2011
Ohio State University researchers have discovered a hereditary cancer syndrome that predisposes certain people to a melanoma of the eye, along with lung cancer, brain cancer and possibly other types of cancer.

The hereditary cancer syndrome is caused by an inherited mutation in a gene called BAP1, researchers say.

The findings suggest that BAP1 mutations cause the disease in a small subset of patients with hereditary uveal melanoma and other cancers.

Uveal melanoma is a cancer of the eye involving the iris, ciliary body, or choroid, which are collectively known as the uvea. These tumors arise from the pigment cells, also known as melanocytes that reside within the uvea giving color to the eye. This is the most common type of eye tumor in adults.

The findings are reported in the Journal of Medical Genetics.

"We are describing a new cancer genetic syndrome that could affect how patients are treated," said first author Dr. Mohamed H. Abdel-Rahman, researcher at the Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute. "If we know that a patient has this particular gene mutation, we can be more proactive with increased cancer screenings to try to detect these other potential cancers when they are beginning to grow."

Study leader Dr. Frederick H. Davidorf, professor emeritus of ophthalmology at Ohio State University, explained that BAP1 seems to play an important role in regulating cell growth and proliferation, and that loss of the gene helps lead to cancer.

"If our results are verified, it would be good to monitor these patients to detect these cancers early when they are most treatable," said Davidorf, who treats ocular oncology patients at Ohio State along with researcher and physician Dr. Colleen Cebulla.

The study involved 53 unrelated uveal melanoma patients with high risk for hereditary cancer, along with additional family members of one of the study participants. Of the 53 patients in the study, researchers identified germline variants in BAP1 in three patients.

"We still don't know exactly the full pattern of cancers these patients are predisposed to, and more studies are needed," said Abdel-Rahman, also an assistant professor of ophthalmology and division of human genetics at Ohio State University College of Medicine.

"So far, we've identified about six families with this hereditary cancer syndrome. We are working with researchers at Nationwide Children's Hospital to develop a clinical test to screen for the BAP1 gene mutation," he said. "Families with this cancer syndrome should be screened for inherited mutations that increase their risk for developing several other cancers."

Other Ohio State researchers involved in the study include Robert Pilarski, James B. Massengill, Benjamin N. Christopher and Getachew Boru, along with Peter Hovland of the Colorado Retina Associates in Denver.

Funding from the Patti Blow Research Fund in Ophthalmology and the American Cancer Society supported this research.

The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute strives to create a cancer-free world by integrating scientific research with excellence in education and patient-centered care, a strategy that leads to better methods of prevention, detection and treatment. Ohio State is one of only 41 National Cancer Institute (NCI)-designated Comprehensive Cancer Centers and one of only seven centers funded by the NCI to conduct both phase I and phase II clinical trials. The NCI recently rated Ohio State's cancer program as "exceptional," the highest rating given by NCI survey teams. As the cancer program's 210-bed adult patient-care component, The James is a "Top Hospital" as named by the Leapfrog Group and one of the top 20 cancer hospitals in the nation as ranked by U.S. News & World Report.

Eileen Scahill | EurekAlert!
Further information:
http://www.osumc.edu

More articles from Life Sciences:

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

nachricht Chlamydia: How bacteria take over control
28.03.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers create artificial materials atom-by-atom

28.03.2017 | Physics and Astronomy

Researchers show p300 protein may suppress leukemia in MDS patients

28.03.2017 | Health and Medicine

Asian dust providing key nutrients for California's giant sequoias

28.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>