Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Octopuses Have a Unique Way to Control Their 'Odd' Forms

20.04.2015

New Research from Hebrew University of Jerusalem's Octopus Research Group

The body plan of octopuses is nothing if not unique, with a sophisticated brain in a soft, bilaterally symmetrical body, encircled by eight radially symmetrical and incredibly flexible arms.


Mapping how octopuses control their movement: Dr. Guy Levy (L) and Prof. Benny Hochner at the Hebrew University of Jerusalem's Octopus Research Group. For videos, see below. (Photo: Hebrew University)

Now, reporting the first detailed kinematic analysis of octopus arm coordination in crawling, researchers from the Hebrew University of Jerusalem show that the animals have a unique motor control strategy to match their “odd” form. The researchers report their findings in the Cell Press journal Current Biology.

“Octopuses use unique locomotion strategies that are different from those found in other animals,” says Prof. Binyamin (Benny) Hochner, Principal Investigator at the Hebrew University of Jerusalem's Octopus Research Group. “This is most likely due to their soft molluscan body that led to the evolution of ‘strange’ morphology, enabling efficient locomotion control without a rigid skeleton.”

Earlier studies of octopus behavior by the Hebrew University team have focused on goal-directed arm movements, like reaching to a target or fetching food to the mouth, Hochner explains.

(See, for instance, http://www.eurekalert.org/pub_releases/2006-04/cp-hto041306.php , http://www.eurekalert.org/pub_releases/2014-05/cp-hod050714.php , and

http://www.eurekalert.org/pub_releases/2011-05/thuo-hur051811.php   ). The new study is the first to tackle a larger question: how octopuses manage to coordinate their eight long, flexible arms during locomotion.

Octopuses most likely evolved from animals more similar to clams, with a protective outer shell and almost no movement to speak of. “During evolution, octopuses lost their heavy protective shells and became more maneuverable on the one hand, but also more vulnerable on the other hand,” says Hebrew University co-author Dr. Guy Levy, of the Department of Neurobiology and the Edmond & Lily Safra Center for Brain Sciences. “Their locomotory abilities evolved to be much faster than those of typical molluscs, probably to compensate for the lack of shell.”

The evolution of a typical snail’s foot into long and slender arms gave octopuses extraordinary flexibility. Excellent vision, together with a highly developed and large brain and the ability to color camouflage, made cephalopods very successful hunters. But how do they control the movements of those remarkable bodies?

After poring over videos of octopuses in action, frame by frame, the researchers made several surprising discoveries. Despite its bilaterally symmetrical body, the octopus can crawl in any direction relative to its body orientation. The orientation of its body and crawling direction are independently controlled, and its crawling lacks any apparent rhythmical patterns in limb coordination.

Hochner, Levy, and their colleagues show that this uncommon maneuverability of octopuses is derived from the radial symmetry of their arms around the body and the simple mechanism by which the arms create the crawling thrust: pushing-by-elongation.

“These two together enable a mechanism whereby the central controller chooses in a moment-to-moment fashion which arms to recruit for pushing the body in an instantaneous direction,” the researchers write. The animal needs only to choose which arms to activate in order to determine the direction of locomotion.

The findings lend support to what’s known as the Embodied Organization concept. In the traditional view, motor-control strategies are devised to fit the body. But, the researchers say, under Embodied Organization, the control and the body evolve together in lockstep within the context of the environment with which those bodies interact.

“This concept, which is borrowed from robotics, argues that the optimal behavior of an autonomous robot or an animal is achieved as a result of the optimization of the reciprocal and dynamical interactions between the brain, body, and the constantly changing environment, thus leading to optimal adaptation of the system, as a whole, to its ecological niche,” Levy says. “Another important virtue of this type of organization is that every level, including the physical properties and the morphology, contribute to the control of the emerging behavior—and not only the brain, as we tend to think.”

Levy and Hochner say their next step is to uncover the neural circuits involved in the octopuses’ coordinated crawling.

The research was supported by the European Commission EP-7 projects OCTOPUS and STIFF-FLOP.

Videos accompanying this press release are available for download at:
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopusCrawling_MovieS1.mp4
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopusCrawling_MovieS2.mp4
http://media.huji.ac.il/new/multimedia/hu150516_LevyOctopus.mp4
(CREDIT: Videos courtesy Dr. Guy Levy / Hebrew University Octopus Research Group)

Original press release text courtesy of Cell Press.

To contact the researchers:

Prof. Benny Hochner: Benny.Hochner@mail.huji.ac.il
Dr. Guy Levy: Guy.Levy@mail.huji.ac.il

Media contact:

Dov Smith
The Hebrew University of Jerusalem
+972-2-5882844 / +972-54-8820860
dovs@savion.huji.ac.il

Dov Smith | Hebrew University

Further reports about: Hebrew University locomotion mechanism morphology movements octopus octopuses

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>