Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean warming causes elephant seals to dive deeper

09.02.2012
Global warming is having an effect on the dive behaviour and search for food of southern elephant seals.
Researchers from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association cooperating in a joint study with biologists and oceanographers from the Universities of Pretoria and Cape Town have discovered that the seals dive deeper for food when in warmer water.

The scientists attribute this behaviour to the migration of prey to greater depths and now wish to check this theory using a new sensor which registers the feeding of the animals below water.

The southern elephant seals from Marion Island, located in the south western part of the Indian Ocean, are extreme divers in the truest sense of the word. The animals spend more than 65 per cent of their lives in depths of over 100 metres, diving far deeper than their fellow species in southern areas. The maximum dive depth of these seals is over 2000 metres. However, the water masses through which the elephant seals from Marion Island swim in search of food are becoming increasingly warmer due to climate change and are forcing the animals to dive deeper. The Southern Ocean is warmed primarily in the water levels up to a depth of 1000 metres and therefore in those areas in which squid and fish ought to be found. “This prey is moving down to greater depths presumably due to the increasing water temperatures and this is forcing the seals to follow them“, explains Dr. Horst Bornemann from the Alfred Wegener Institute.
Over the course of several years he and his colleague Dr. Joachim Plötz together with Dr. Trevor McIntyre and other seal researchers from the Mammal Research Institute (MRI) in South Africa have fitted over 30 elephant seals with satellite transmitters. These transmitters, the size of a fist, are attached to the head of the seals using artificial resin immediately after moulting and measure the dive depth, water temperature and salinity every time the animals dive. When the animal resurfaces to breathe the transmitters send their data to the respective research institutes via satellite. The results show that the elephant seals need to dive deeper in warmer water so that they ultimately have less time to actually search for food. ”We therefore assume that the animals will find less prey in warmer water masses“, explains Joachim Plötz.

The scientists from Bremerhaven will be going back to Marion Island in April of this year to collect evidence for their theory. This time they wish to equip the animals with a “jaw movement” sensor which has been developed by Japanese biologists at the National Institute of Polar Research in Tokyo. It is not much larger than a small finger and notices when the seal opens its mouth. “So far we can only derive from the dive profile whether an elephant seal was probably following a fish swarm. With this new measuring device we learn whether he has actually eaten“, says Joachim Plötz.

Using this forage data the AWI biologists wish to draw conclusions as to the spatial and temporal distribution of particularly productive zones in the South Polar Sea. “The food in the sea is unevenly distributed. It is not worth the seals fishing anywhere and at any time. With the new data we hope to see the routes taken by the elephant seals of Marion Island and the water levels in which they find food“, says Horst Bornemann.

The animals lay side by side on the beach and wait for their fur to shed. J. Plötz / Alfred Wegener Institute

The scientists also take days of walking over the ”island of horizontal rain“ into the bargain to achieve their research goal. “The elephant seals of Marion Island are very loyal to their location. They return to this island time and again to moult and mate. This behaviour gives us the opportunity to consistently fit measuring devices to the same animals thereby gaining an insight into the movement patterns of individual animals. Their movement and dive routes help us to find out where the oceanic food grounds of the Marion Island elephant seals are located“, explains Joachim Plötz.

The extent to which the animals of this rather northerly elephant seal colony are able to adapt to the warming of the ocean remains to be seen. The scientists from Germany and South Africa see only two alternatives for the animals: either the seals extend their hunting grounds to the colder water masses of the Antarctic or they must dive even deeper in future. The elephant seals from Marion Island are very close to reaching their physiological limits even in their dive behaviour today. This leads the biologists to assume that this may reduce the survival rate of the seals in the long term.

Information for editors: The study appeared in the November 2011 issue of the trade journal Marine Ecology Progress Series. It is entitled:
Trevor McIntyre, Isabelle J. Ansorge, Horst Bornemann, Joachim Plötz, Cheryl A. Tosh, Marthan N. Bester: Elephant seal dive behavior is influenced by ocean temperature: implications for climate change impacts on an ocean predator, Mar Ecol Prog Ser, Vol. 441: 257-272, 2011, doi:10.3354/meps09380

Printable images are available in the online version of this press release at http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Your contact partners at the Alfred Wegener Institute are Dr. Horst Bornemann (Tel: +49 (0)471 4831-1862; email: Horst.Bornemann(at)awi.de) and Dr. Joachim Plötz (Tel: +49 (0)471 4831-1309; email: Joachim.Ploetz(at)awi.de) and Dr. Trevor McIntyre (Tel.: 0027 (0) 73 350 1930; email: tmcintyre(at)zoology.up.ac.za) and in the Communication and Media Department of the Alfred Wegener Institute Sina Löschke (Tel: +49 (0)471 4831-2008; email: Sina.Loeschke(at)awi.de).

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>