Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean warming causes elephant seals to dive deeper

09.02.2012
Global warming is having an effect on the dive behaviour and search for food of southern elephant seals.
Researchers from the Alfred Wegener Institute for Polar and Marine Research in the Helmholtz Association cooperating in a joint study with biologists and oceanographers from the Universities of Pretoria and Cape Town have discovered that the seals dive deeper for food when in warmer water.

The scientists attribute this behaviour to the migration of prey to greater depths and now wish to check this theory using a new sensor which registers the feeding of the animals below water.

The southern elephant seals from Marion Island, located in the south western part of the Indian Ocean, are extreme divers in the truest sense of the word. The animals spend more than 65 per cent of their lives in depths of over 100 metres, diving far deeper than their fellow species in southern areas. The maximum dive depth of these seals is over 2000 metres. However, the water masses through which the elephant seals from Marion Island swim in search of food are becoming increasingly warmer due to climate change and are forcing the animals to dive deeper. The Southern Ocean is warmed primarily in the water levels up to a depth of 1000 metres and therefore in those areas in which squid and fish ought to be found. “This prey is moving down to greater depths presumably due to the increasing water temperatures and this is forcing the seals to follow them“, explains Dr. Horst Bornemann from the Alfred Wegener Institute.
Over the course of several years he and his colleague Dr. Joachim Plötz together with Dr. Trevor McIntyre and other seal researchers from the Mammal Research Institute (MRI) in South Africa have fitted over 30 elephant seals with satellite transmitters. These transmitters, the size of a fist, are attached to the head of the seals using artificial resin immediately after moulting and measure the dive depth, water temperature and salinity every time the animals dive. When the animal resurfaces to breathe the transmitters send their data to the respective research institutes via satellite. The results show that the elephant seals need to dive deeper in warmer water so that they ultimately have less time to actually search for food. ”We therefore assume that the animals will find less prey in warmer water masses“, explains Joachim Plötz.

The scientists from Bremerhaven will be going back to Marion Island in April of this year to collect evidence for their theory. This time they wish to equip the animals with a “jaw movement” sensor which has been developed by Japanese biologists at the National Institute of Polar Research in Tokyo. It is not much larger than a small finger and notices when the seal opens its mouth. “So far we can only derive from the dive profile whether an elephant seal was probably following a fish swarm. With this new measuring device we learn whether he has actually eaten“, says Joachim Plötz.

Using this forage data the AWI biologists wish to draw conclusions as to the spatial and temporal distribution of particularly productive zones in the South Polar Sea. “The food in the sea is unevenly distributed. It is not worth the seals fishing anywhere and at any time. With the new data we hope to see the routes taken by the elephant seals of Marion Island and the water levels in which they find food“, says Horst Bornemann.

The animals lay side by side on the beach and wait for their fur to shed. J. Plötz / Alfred Wegener Institute

The scientists also take days of walking over the ”island of horizontal rain“ into the bargain to achieve their research goal. “The elephant seals of Marion Island are very loyal to their location. They return to this island time and again to moult and mate. This behaviour gives us the opportunity to consistently fit measuring devices to the same animals thereby gaining an insight into the movement patterns of individual animals. Their movement and dive routes help us to find out where the oceanic food grounds of the Marion Island elephant seals are located“, explains Joachim Plötz.

The extent to which the animals of this rather northerly elephant seal colony are able to adapt to the warming of the ocean remains to be seen. The scientists from Germany and South Africa see only two alternatives for the animals: either the seals extend their hunting grounds to the colder water masses of the Antarctic or they must dive even deeper in future. The elephant seals from Marion Island are very close to reaching their physiological limits even in their dive behaviour today. This leads the biologists to assume that this may reduce the survival rate of the seals in the long term.

Information for editors: The study appeared in the November 2011 issue of the trade journal Marine Ecology Progress Series. It is entitled:
Trevor McIntyre, Isabelle J. Ansorge, Horst Bornemann, Joachim Plötz, Cheryl A. Tosh, Marthan N. Bester: Elephant seal dive behavior is influenced by ocean temperature: implications for climate change impacts on an ocean predator, Mar Ecol Prog Ser, Vol. 441: 257-272, 2011, doi:10.3354/meps09380

Printable images are available in the online version of this press release at http://www.awi.de/de/aktuelles_und_presse/pressemitteilungen/.

Your contact partners at the Alfred Wegener Institute are Dr. Horst Bornemann (Tel: +49 (0)471 4831-1862; email: Horst.Bornemann(at)awi.de) and Dr. Joachim Plötz (Tel: +49 (0)471 4831-1309; email: Joachim.Ploetz(at)awi.de) and Dr. Trevor McIntyre (Tel.: 0027 (0) 73 350 1930; email: tmcintyre(at)zoology.up.ac.za) and in the Communication and Media Department of the Alfred Wegener Institute Sina Löschke (Tel: +49 (0)471 4831-2008; email: Sina.Loeschke(at)awi.de).

The Alfred Wegener Institute conducts research in the Arctic and Antarctic and in the high and mid-latitude oceans. The Institute coordinates German polar research and provides important infrastructure such as the research ice breaker Polarstern and research stations in the Arctic and Antarctic to the national and international scientific world. The Alfred Wegener Institute is one of the 18 research centres of the Helmholtz Association, the largest scientific organisation in Germany.

Ralf Röchert | idw
Further information:
http://www.awi.de

More articles from Life Sciences:

nachricht BigH1 -- The key histone for male fertility
14.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Guardians of the Gate
14.12.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Plasmonic biosensors enable development of new easy-to-use health tests

14.12.2017 | Health and Medicine

New type of smart windows use liquid to switch from clear to reflective

14.12.2017 | Physics and Astronomy

BigH1 -- The key histone for male fertility

14.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>