Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification will seriously impact mussel populations

14.07.2011
Concerns for mussels as larvae will be smaller and weaker in acidic future

Since the birth of the industrial revolution, ocean pH has dropped by 0.1 units. That might not sound like much until you realise that a 0.1 unit fall is a 30% increase in acidity. And, with predictions that ocean pH will continue plummeting, ecologists are becoming increasingly concerned about the impact of ocean acidification on marine populations.

Brian Gaylord and his colleagues from the University of California at Davis explain that the open-coast mussel, Mytilus californianus, is a foundation species for many coastal ecosystems on the exposed northwestern coasts of North America, yet no one knew how ocean acidification might affect this keystone organism. So, the team decided to find out how a fall in pH might impinge on the earliest settlers to colonise an exposed rocky outcrop, M. californianus larvae, and publish their discovery that the larvae are significantly weakened by ocean acidification in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/15/2586.abstract.

Growing freshly fertilized M. californianus larvae in seawater laced with carbon dioxide ranging from the modern level of 380 p.p.m.CO2 up to a 'fossil-fuel intensive' scenario of 970 p.p.m.CO2, the team allowed the larvae to develop for 8 days. Then they analysed the strength, size and thickness of the larvae's shells and found that acidification of the mollusc's seawater has a strong impact on shell strength. Shockingly, the shells of 5 day old larvae raised in 970 p.p.m.CO2 were 20% weaker than those of larvae reared at the current CO2 level, while the shells of larvae reared at 540 p.p.m.CO2 were only 13% weaker. The team also found that after 8 days at 970 p.p.m.CO2 the shells were up to 15% thinner and 5% smaller, and the body masses of the molluscs within the shell were as much as 33% smaller than those of mussels grown at modern CO2 levels.

'The observed ocean acidification-induced decrease in shell integrity in M. californianus represents a clear decline in function,' say Gaylord and his colleagues, who also warn that, 'Such reductions may in fact be common in bivalves.' Outlining the potential ecological consequences of ocean acidification, the team suspects that larvae weakened by rising CO2 levels could develop more slowly or, alternatively, they could be more vulnerable to predation, more susceptible to stress and at greater risk of desiccation. Ultimately these factors could conspire to reduce the mussel's survival and destroy the delicate balance that exists in today's coastal ecosystems.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Gaylord, B., Hill, T. M., Sanford, E., Lenz, E. A., Jacobs, L. A., Sato, K. N., Russell, A. D. and Hettinger, A. (2011). Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586-2594.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>