Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification will seriously impact mussel populations

14.07.2011
Concerns for mussels as larvae will be smaller and weaker in acidic future

Since the birth of the industrial revolution, ocean pH has dropped by 0.1 units. That might not sound like much until you realise that a 0.1 unit fall is a 30% increase in acidity. And, with predictions that ocean pH will continue plummeting, ecologists are becoming increasingly concerned about the impact of ocean acidification on marine populations.

Brian Gaylord and his colleagues from the University of California at Davis explain that the open-coast mussel, Mytilus californianus, is a foundation species for many coastal ecosystems on the exposed northwestern coasts of North America, yet no one knew how ocean acidification might affect this keystone organism. So, the team decided to find out how a fall in pH might impinge on the earliest settlers to colonise an exposed rocky outcrop, M. californianus larvae, and publish their discovery that the larvae are significantly weakened by ocean acidification in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/15/2586.abstract.

Growing freshly fertilized M. californianus larvae in seawater laced with carbon dioxide ranging from the modern level of 380 p.p.m.CO2 up to a 'fossil-fuel intensive' scenario of 970 p.p.m.CO2, the team allowed the larvae to develop for 8 days. Then they analysed the strength, size and thickness of the larvae's shells and found that acidification of the mollusc's seawater has a strong impact on shell strength. Shockingly, the shells of 5 day old larvae raised in 970 p.p.m.CO2 were 20% weaker than those of larvae reared at the current CO2 level, while the shells of larvae reared at 540 p.p.m.CO2 were only 13% weaker. The team also found that after 8 days at 970 p.p.m.CO2 the shells were up to 15% thinner and 5% smaller, and the body masses of the molluscs within the shell were as much as 33% smaller than those of mussels grown at modern CO2 levels.

'The observed ocean acidification-induced decrease in shell integrity in M. californianus represents a clear decline in function,' say Gaylord and his colleagues, who also warn that, 'Such reductions may in fact be common in bivalves.' Outlining the potential ecological consequences of ocean acidification, the team suspects that larvae weakened by rising CO2 levels could develop more slowly or, alternatively, they could be more vulnerable to predation, more susceptible to stress and at greater risk of desiccation. Ultimately these factors could conspire to reduce the mussel's survival and destroy the delicate balance that exists in today's coastal ecosystems.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Gaylord, B., Hill, T. M., Sanford, E., Lenz, E. A., Jacobs, L. A., Sato, K. N., Russell, A. D. and Hettinger, A. (2011). Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586-2594.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>