Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ocean acidification will seriously impact mussel populations

14.07.2011
Concerns for mussels as larvae will be smaller and weaker in acidic future

Since the birth of the industrial revolution, ocean pH has dropped by 0.1 units. That might not sound like much until you realise that a 0.1 unit fall is a 30% increase in acidity. And, with predictions that ocean pH will continue plummeting, ecologists are becoming increasingly concerned about the impact of ocean acidification on marine populations.

Brian Gaylord and his colleagues from the University of California at Davis explain that the open-coast mussel, Mytilus californianus, is a foundation species for many coastal ecosystems on the exposed northwestern coasts of North America, yet no one knew how ocean acidification might affect this keystone organism. So, the team decided to find out how a fall in pH might impinge on the earliest settlers to colonise an exposed rocky outcrop, M. californianus larvae, and publish their discovery that the larvae are significantly weakened by ocean acidification in The Journal of Experimental Biology at http://jeb.biologists.org/content/214/15/2586.abstract.

Growing freshly fertilized M. californianus larvae in seawater laced with carbon dioxide ranging from the modern level of 380 p.p.m.CO2 up to a 'fossil-fuel intensive' scenario of 970 p.p.m.CO2, the team allowed the larvae to develop for 8 days. Then they analysed the strength, size and thickness of the larvae's shells and found that acidification of the mollusc's seawater has a strong impact on shell strength. Shockingly, the shells of 5 day old larvae raised in 970 p.p.m.CO2 were 20% weaker than those of larvae reared at the current CO2 level, while the shells of larvae reared at 540 p.p.m.CO2 were only 13% weaker. The team also found that after 8 days at 970 p.p.m.CO2 the shells were up to 15% thinner and 5% smaller, and the body masses of the molluscs within the shell were as much as 33% smaller than those of mussels grown at modern CO2 levels.

'The observed ocean acidification-induced decrease in shell integrity in M. californianus represents a clear decline in function,' say Gaylord and his colleagues, who also warn that, 'Such reductions may in fact be common in bivalves.' Outlining the potential ecological consequences of ocean acidification, the team suspects that larvae weakened by rising CO2 levels could develop more slowly or, alternatively, they could be more vulnerable to predation, more susceptible to stress and at greater risk of desiccation. Ultimately these factors could conspire to reduce the mussel's survival and destroy the delicate balance that exists in today's coastal ecosystems.

IF REPORTING ON THIS STORY, PLEASE MENTION THE JOURNAL OF EXPERIMENTAL BIOLOGY AS THE SOURCE AND, IF REPORTING ONLINE, PLEASE CARRY A LINK TO: http://jeb.biologists.org

REFERENCE: Gaylord, B., Hill, T. M., Sanford, E., Lenz, E. A., Jacobs, L. A., Sato, K. N., Russell, A. D. and Hettinger, A. (2011). Functional impacts of ocean acidification in an ecologically critical foundation species. J. Exp. Biol. 214, 2586-2594.

This article is posted on this site to give advance access to other authorised media who may wish to report on this story. Full attribution is required, and if reporting online a link to jeb.biologists.com is also required. The story posted here is COPYRIGHTED. Therefore advance permission is required before any and every reproduction of each article in full. PLEASE CONTACT permissions@biologists.com

Kathryn Knight | EurekAlert!
Further information:
http://www.biologists.com
http://jeb.biologists.org

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>