Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles No Barrier to Higher Speeds for Worms

08.02.2012
Obstacles in an organism’s path can help it to move faster, not slower, researchers from New York University’s Applied Math Lab at the Courant Institute of Mathematical Sciences have found through a series of experiments and computer simulations.

Their findings, which appear in the Journal of the Royal Society Interface, have implications for a better understanding of basic locomotion strategies found in biology, and the survival and propagation of the parasite that causes malaria.

Nematodes, which are very small worms, and many other organisms use a snake-like, undulatory motion to propel forward across dry surfaces and through fluids. There are, however, many instances where small organisms must make their way through a fluid-filled environment studded with obstacles that are comparable in size to the swimmers themselves. Nearly all microscopic nematodes, about one millimeter in length, face such barriers when moving through wet soil—the soil’s granules serve as hurdles these creatures must navigate. Similarly, the malaria parasite’s male gametes, or reproductive cells, must swim through a dense suspension of their host's blood cells in order to procreate. A similar situation arises for spermatozoa moving through the reproductive tract.

In the Journal of the Royal Society Interface study, the Applied Math Lab (AML) group sought to understand how efficiently such undulating organisms can move through obstacle-laden fluids. To do so, they conducted a study comparing experiments using live worms, the nematode C. elegans, with the results of a computer model of a worm moving in a virtual environment. In the experiment, the worms swam through a very shallow pool filled with a lattice of obstructing micro-pillars while the computer simulation gave a benchmark of a worm moving blindly without sensing and response.

Surprisingly, C. elegans was able to advance much more quickly through the lattice of obstacles than through a fluid in which their movement was unimpeded.

“If the lattice is neither too tight nor too loose, the worms move much faster by threading between and pushing off the pillars,” the researchers wrote.

The second surprise was that the computer simulation gave very similar results, reproducing the fast motions of the worm in the lattice, but also showing complex “life-like” behaviors that had been interpreted as coming from sensing and response of the worm to its local environment.

These results enhance our understanding of biological locomotion through tortuous environments like soils or the reproductive tract, showing how real organisms can take advantage of what seems a defiant complexity, and offer intriguing insights into how the reproductive processes of dangerous parasites might be interrupted.

The study’s co-authors were: Trushant Majmudar, a post-doctoral fellow; Eric Keaveny, a former post-doctoral fellow who is now a lecturer at Imperial College London; Professor Jun Zhang; and Professor Michael Shelley.

The study was funded by grants from the National Science Foundation.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>