Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obstacles No Barrier to Higher Speeds for Worms

08.02.2012
Obstacles in an organism’s path can help it to move faster, not slower, researchers from New York University’s Applied Math Lab at the Courant Institute of Mathematical Sciences have found through a series of experiments and computer simulations.

Their findings, which appear in the Journal of the Royal Society Interface, have implications for a better understanding of basic locomotion strategies found in biology, and the survival and propagation of the parasite that causes malaria.

Nematodes, which are very small worms, and many other organisms use a snake-like, undulatory motion to propel forward across dry surfaces and through fluids. There are, however, many instances where small organisms must make their way through a fluid-filled environment studded with obstacles that are comparable in size to the swimmers themselves. Nearly all microscopic nematodes, about one millimeter in length, face such barriers when moving through wet soil—the soil’s granules serve as hurdles these creatures must navigate. Similarly, the malaria parasite’s male gametes, or reproductive cells, must swim through a dense suspension of their host's blood cells in order to procreate. A similar situation arises for spermatozoa moving through the reproductive tract.

In the Journal of the Royal Society Interface study, the Applied Math Lab (AML) group sought to understand how efficiently such undulating organisms can move through obstacle-laden fluids. To do so, they conducted a study comparing experiments using live worms, the nematode C. elegans, with the results of a computer model of a worm moving in a virtual environment. In the experiment, the worms swam through a very shallow pool filled with a lattice of obstructing micro-pillars while the computer simulation gave a benchmark of a worm moving blindly without sensing and response.

Surprisingly, C. elegans was able to advance much more quickly through the lattice of obstacles than through a fluid in which their movement was unimpeded.

“If the lattice is neither too tight nor too loose, the worms move much faster by threading between and pushing off the pillars,” the researchers wrote.

The second surprise was that the computer simulation gave very similar results, reproducing the fast motions of the worm in the lattice, but also showing complex “life-like” behaviors that had been interpreted as coming from sensing and response of the worm to its local environment.

These results enhance our understanding of biological locomotion through tortuous environments like soils or the reproductive tract, showing how real organisms can take advantage of what seems a defiant complexity, and offer intriguing insights into how the reproductive processes of dangerous parasites might be interrupted.

The study’s co-authors were: Trushant Majmudar, a post-doctoral fellow; Eric Keaveny, a former post-doctoral fellow who is now a lecturer at Imperial College London; Professor Jun Zhang; and Professor Michael Shelley.

The study was funded by grants from the National Science Foundation.

James Devitt | Newswise Science News
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>