Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observing Brain During Normal Activity

12.12.2008
The Swartz Center for Computational Neuroscience at UC San Diego will create a new imagining process to study human body/brain dynamics of subjects engaged in normal activity in ordinary room environments.

The work, to be performed under a four year, $3.4 million research grant from the U.S. Navy Office of Naval Research, aims at developing a concurrent brain and body imaging modality MoBI (“Mobile Brain/Body Imaging”)

Explaining the project, the principal investigator, Swartz Center Director Scott Makeig, said, “Although functional brain imaging has allowed many new insights into human brain function, so far no imaging modality has allowed scientists to study brain dynamics of subjects performing normal activities in a 3-D environment. The MoBI modality we are developing under this project will allow such studies for the first time.”

Makeig and colleagues propose to combine high-density, non-invasive electroencephalographic (EEG) or ‘brainwave’ recordings with full-body motion capture recording to explore the distributed brain dynamics that accompany and support natural human behavior, including interactions with objects, active agents, and other people.

Sub-projects of the research include experiments involving treadmill walking and running, pointing and reaching, balancing and juggling, route finding, gesturing and game playing. Collaborators on the project include Rafael Nunez, professor of cognitive science at UC San Diego, Daniel Ferris, University of Michigan, Kate Holzbaur of Wake Forest University, and Tzyy-Ping Jung of UCSD and National Chiao-Tung University in Taiwan. Jung and colleagues are also developing microelectronic brainwave processing systems that could soon be incorporated in wearable wireless MoBI systems.

Barry Jagoda | Newswise Science News
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

NASA eyes Pineapple Express soaking California

24.02.2017 | Earth Sciences

New gene for atrazine resistance identified in waterhemp

24.02.2017 | Agricultural and Forestry Science

New Mechanisms of Gene Inactivation may prevent Aging and Cancer

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>