Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Observed "live": water is an active team player for enzymes

19.09.2011
In biologically active enzyme substrate compounds, as can be found in medicines, water plays a more decisive role than has been imagined up to now.

The surrounding water acts like an "adhesive", in order to keep the substrate at the right place on an enzyme. For this, the dynamism of the water is retarded. Scientists at the RUB under Prof. Dr. Martina Havenith (Physical Chemistry) in close cooperation with the group of Prof. Irit Sagi from the Israeli Weizmann Institute have been able to observe and prove the retardation of the water's dynamism "live" for the first time in close.

The researchers are reporting on their results in "Nature Structural & Molecular Biology“. Observed "live": water is an active team player for enzymes
RUB researchers report in Nature Structural & Molecular Biology
Water acts as an "adhesive" in biological enzyme substrate compounds
In biologically active enzyme substrate compounds, as can be found in medicines, water plays a more decisive role than has been imagined up to now. The surrounding water acts like an "adhesive", in order to keep the substrate at the right place on an enzyme. For this, the dynamism of the water is retarded. Scientists at the RUB under Prof. Dr. Martina Havenith (Physical Chemistry) in close cooperation with the group of Prof. Irit Sagi from the Israeli Weizmann Institute have been able to observe and prove the retardation of the water's dynamism "live" for the first time in close. The researchers are reporting on their results in "Nature Structural & Molecular Biology“.

Which role does the solvent play?

Enzymes are natural substances accelerating and controlling the metabolic processes in the body. They are, for example, of central importance for the immune system, as they control the balance between activating and inhibiting defensive reactions and play an important role in inflammation reactions. It had been known for some time that enzymatic functions take place in various solvents at highly differing speeds. But up to now, the contribution made by the solvent - this is water in biological processes - on a molecular level had not yet been clarified.

Two new techniques combined

Prof. Havenith’s group at the RUB and Prof. Irit Sagi’s group at the Institute of Structural Biology of the Weizmann Institute have combined two newly developed experimental techniques, in order directly to prove the significance of the water for the enzymatic functions. The object of their study was matrix metalloproteases (MMP). MMPs can be found outside our cells in the so-called extracellular matrix, where they fulfil central tasks as message transmitters, managers or maintenance units on a molecular level. As a result of the decomposition of the extracellular matrix, the MMP are actively and directly involved in the reconstruction of our tissue, e.g. in embryo or tumour growth and in wound healing. The numerous possible fields of use make this family of enzymes an important field of study for the development of medicines. "The mechanism for the enzymatic activity of the matrix metalloproteases is however not yet known on a molecular level, which poses still challenges on any synthetic drug design," says Prof. Havenith.

Precise characterisation of all "players"

For precise understanding of the reaction, the researchers looked at all the "players" involved: the matrix metalloprotease enzyme as the “lock”, its activating substrate - the "key" - and the water as a solvent, the reaction environment. In the experiment, the scientists investigated the binding of the substrate to the MMP. With the help of time-resolved X-ray spectroscopy, they were able to characterise precisely the structural changes in the vicinity of the active enzyme centre (here: of the zinc atom) with atomic resolution. With the help of kinetic THz absorption spectroscopy (KITA), they recorded the changes in time of the fast water movements.

The role of water for future drug design

In various MMP-protein combinations, an unambiguous correlation was found between the fluctuations of the water network, the structure changes and the function. Molecular dynamic simulations provided an explanation for the observations: While the substrate has not found yet the "correct point" of the enzyme - the lock-, the water dynamism, i.e. the opening and reformation of hydrogen bonds between water molecules (the "terahertz dance" of the water), is fast. At the same time as the substrate is docking onto the active centre, the water movement in the environment slows down. Water then acts then more like a kind of adhesive there, which keeps the substrate at this point. This change of the THz dance of the water with the formation of the enzyme-substrate binding is however exclusively observed in biologically active enzyme-substrate combinations. "The retardation of the water dynamism, observed for the first time, thus appears to be an essential part of the functional control", says Prof. Havenith. "Therefore, in future, taking the role of the water into account in the development of medicines, for example for tumour therapy, might become important."

"Solvation Science@RUB“

This work is part of "Solvation Science@RUB“, the research topic of the new center of molecular spectroscopy and simulation of solvent controlled processes at the RUB (ZEMOS), and of the excellence cluster application of the RUB “RESOLV”, which is now under review at the German council of science. In chemistry, process engineering and biology, there are an enormous number of publications describing solvents as inert (passive) media for molecular processes. Beyond this traditional view, the active role of the solvent is however becoming more and more visible. New experimental and theoretical methods now permit investigation, description and systematic control of the structure, dynamism and kinetics of complex solvation phenomena on a molecular level. "So it is now most timely to develop general models with a predictive power for solvation processes", says Prof. Havenith. Precisely that is the objective of "Solvation Science@RUB".

Title

M. Grossman, B. Born, M. Heyden, D. Tworowski, G. Fields, I. Sagi, M. Havenith: Correlated structural kinetics and retarded solvent dynamics at the metalloprotease active site. Nature Structural & Molecular Biology, Advance Online Publication (AOP), doi: 10.1038/nsmb.2120

http://www.nature.com/nsmb/journal/vaop/ncurrent/abs/nsmb.2120.html

Further information

Prof. Dr. Martina Havenith, Faculty of Chemistry and Biochemistry of the Ruhr-Universität Bochum, Chair of Physical Chemistry II, Tel. 0234/32-24249, martina.havenith@rub.de

Editorial: Jens Wylkop

Dr. Josef König | idw
Further information:
http://www.ruhr-uni-bochum.de/
http://www.nature.com/nsmb/journal/vaop/ncurrent/abs/nsmb.2120.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>