Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From Obscurity to Dominance: Tracking the Rapid Evolutionary Rise of Ray-Finned Fish

23.07.2013
Mass extinctions, like lotteries, result in a multitude of losers and a few lucky winners.

This is the story of one of the winners, a small, shell-crushing predatory fish called Fouldenia, which first appears in the fossil record a mere 11 million years after an extinction that wiped out more than 90 percent of the planet's vertebrate species.

The extinction that ended the Devonian Era 359 million years ago created opportunities quickly exploited by a formerly rare and unremarkable group of fish that went on to become—in terms of the sheer number of species—the most successful vertebrates (backboned animals) on the planet today: the ray-finned fish.

A University of Michigan evolutionary biologist and a colleague have shown that the previously known but misclassified Fouldenia was the first recorded shell-crushing ray-finned fish. This long-extinct fish, and a handful of its relatives, demonstrate that in the immediate aftermath of the end-Devonian extinction, ray-finned fish had already acquired a diversity of forms that gave them an evolutionary edge, enabling them to fill the ecological vacuum left by the demise of most major fish groups.

"This event 359 million years ago is called the Hangenberg extinction, and it nearly wiped out vertebrate life, which at the time was limited to the water," said Lauren Sallan, an assistant professor in the U-M Department of Ecology and Evolutionary Biology. "The ray-finned fish come to the fore after that event. They not only recover from this extinction, but they go from being a few minor lineages to dominating all the oceans."

Sallan and Michael Coates of the University of Chicago also were able to identify juveniles of Fouldenia, a rare find that allowed them to show that the body shape of these fish changed dramatically as they developed. The relatives of Fouldenia, shell-crushers all, apparently took advantage of this developmental quirk to produce new forms. This diverse band of survivors spread worldwide and persisted for nearly 100 million years.

A study by Sallan and Coates was published online July 22 in the Zoological Journal of the Linnean Society.

"These early, post-Devonian ray-finned fish provide the first glimpse of what is to come: an evolutionary profusion of body forms, fin shapes, and extraordinary jaws and teeth. The ray-finned fish really do exemplify Darwin's comment about 'endless forms most beautiful and wonderful,'" Coates said.

There are around 30,000 species of ray-finned fish today, comprising nearly 99 percent of all fish species. Think of the word "fish" and the image that pops into your mind will likely be a ray-finned fish, members of a ubiquitous class that includes everything from tuna to trout, catfish to cod, swordfish to sunfish, perch to piranha, goldfish to goby.

After re-evaluating fossils from sites in Scotland dating to 348 million years ago, Sallan and Coates concluded that Fouldenia and its relative Styracopterus, which previous researchers had classified as the same species, are in fact separate genera. A genus is the category of biological classification between the family and the species.

Sallan and Coates determined that Fouldenia had massive tooth plates on its upper and lower jaws, suitable for preying on hard-shelled animals. It resembled modern-day jacks, which include the Japanese amberjack, or yellowtail, familiar to sushi lovers. Styracopterus was an early mimic of modern deep-bodied fish such as the angelfish. Both of these primeval fish were less than 10 inches long.

"Those Scottish fossil beds have four or five known genera of ray-finned fish in them. They all look completely different, and they all do completely different things," Sallan said.

The same sites have also produced some of the earliest post-Devonian tetrapods, four-limbed creatures that included some of humanity's earliest relatives, filling a post-extinction lull in their diversity known as Romer's Gap.

New branches on the tree of life had sprouted, setting the stage for an explosive diversification of forms that evolutionary biologists call an adaptive radiation. These events often occur in response to new ecological opportunities—when habitats are unoccupied by competitors, for example. That's what happened when a much later extinction killed off the dinosaurs and allowed mammals to take over those reptiles' ecological roles.

Something similar happened to ray-finned fish, which have fins supported by long, bony rods arranged in a ray pattern. Before the extinction, fish were dominated by two groups: the armor-plated, predatory placoderms and the lobe-finned fish, whose fins are borne on a fleshy, scaly stalk extending from the body.

Placoderms were eliminated by the end-Devonian extinction, and most of the lobe-finned fish perished as well, though survivors live on today in the lungfish and the coelacanth. In addition to a few ray-finned fish, some sharks and tetrapods survived the Hangenberg event. Tetrapods later crawled ashore and evolved into amphibians, reptiles, birds and mammals.

Other survivors of the Hangenberg event included sea urchins, sea lilies and shelled invertebrates called brachiopods. With most other predators now out of the picture, early sharks and ray-finned fish like Fouldenia used their crushing jaws to dine on these spiny, stalked and hard-shelled creatures.

"Because the ecosystem's been decimated, the only thing left to prey on are shelly animals," Sallan said. "So in this vacuum left by the mass extinction event, a bunch of different animals are going into these vacated niches and taking over those jobs."

The Hangenberg event was the final blow in a series of mass extinctions that ended the Devonian, which is often called the Age of Fish. The Hangenberg extinction is associated with a warming period when sea levels rose and the amount of oxygen in the water plummeted, followed by a cooling period that spread glaciers as far as the tropics.

Study: http://onlinelibrary.wiley.com/doi/10.1111/zoj.12054/abstract

Lauren Sallan: www.lsa.umich.edu/eeb/directory/faculty/lsallan/default.asp

Jim Erickson | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

A Nano-Roundabout for Light

09.12.2016 | Physics and Astronomy

Further Improvement of Qubit Lifetime for Quantum Computers

09.12.2016 | Physics and Astronomy

New weapon against Diabetes

09.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>