Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity starts in the head? Six newly discovered genes for obesity have a neural effect

08.01.2009
Joint press release by the Helmholtz Zentrum München and the German National Genome Research Network

Obesity is known to increase the risk of chronic disorders, such as diabetes (type 2). An international team of scientists with German participation through the Helmholtz Zentrum München identified six new obesity genes. Gene expression analyses have shown that all six genes are active in brain cells.

The international GIANT (Genetic Investigation of Anthropometric Parameters) consortium works on the discovery of obesity genes. So far, the scientists have analyzed two million DNA variations in 15 genome-wide association studies with a total of more than 32,000 participants. The hereby identified candidate genes were validated in 14 further studies including 59,000 participants. In addition to the FTO and MC4R genes already known, it was now possible for six more obesity genes to be identified: TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2, and NEGR1.

Gene expression analyses have shown that all six genes are active in brain cells. Also the previously known two obesity genes, FTO and MC4R, show a similar expression pattern; in case of the MC4R gene, a genotype-dependant influence on the behavior of appetite is already established. Scientists of the German National Genome Research Network (NGFN), Prof. H.-Erich Wichmann and Dr. Iris Heid from the Helmholtz Zentrum München, Institute of Epidemiology, who lead the German participation of this consortium, emphasize: "Definitely, the two main causes for obesity are poor nutrition and lack of physical activity. But the biology of these genes suggests genetic factors underlying the different reaction of people to lifestyle and environmental conditions."

With the exception of the SH2B1 gene, which plays a role in the leptin signalling and thus in the regulation of appetite, none of the other five genes was hitherto discussed as obesity genes. Iris Heid and her collegue Claudia Lamina from the Ludwigs-Maximilians-Universität München are enthused: "The purely statistical approach of the genome-wide association analysis can depict new aspects of the biology of weight regulation, which were previously unanticipated."

As a next step, the scientists evaluate other anthropometric measures, in order to shed light on different aspects of obesity. In addition, they will expand and include further studies into their analysis as they have realized that the individual studies are all too small, and only by means of collaboration, is it possible to achieve further success here.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/en/press/press-releases/press-releases-2009/press-releases-2009-detail/article/11468/44/index.html

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>