Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Obesity starts in the head? Six newly discovered genes for obesity have a neural effect

08.01.2009
Joint press release by the Helmholtz Zentrum München and the German National Genome Research Network

Obesity is known to increase the risk of chronic disorders, such as diabetes (type 2). An international team of scientists with German participation through the Helmholtz Zentrum München identified six new obesity genes. Gene expression analyses have shown that all six genes are active in brain cells.

The international GIANT (Genetic Investigation of Anthropometric Parameters) consortium works on the discovery of obesity genes. So far, the scientists have analyzed two million DNA variations in 15 genome-wide association studies with a total of more than 32,000 participants. The hereby identified candidate genes were validated in 14 further studies including 59,000 participants. In addition to the FTO and MC4R genes already known, it was now possible for six more obesity genes to be identified: TMEM18, KCTD15, GNPDA2, SH2B1, MTCH2, and NEGR1.

Gene expression analyses have shown that all six genes are active in brain cells. Also the previously known two obesity genes, FTO and MC4R, show a similar expression pattern; in case of the MC4R gene, a genotype-dependant influence on the behavior of appetite is already established. Scientists of the German National Genome Research Network (NGFN), Prof. H.-Erich Wichmann and Dr. Iris Heid from the Helmholtz Zentrum München, Institute of Epidemiology, who lead the German participation of this consortium, emphasize: "Definitely, the two main causes for obesity are poor nutrition and lack of physical activity. But the biology of these genes suggests genetic factors underlying the different reaction of people to lifestyle and environmental conditions."

With the exception of the SH2B1 gene, which plays a role in the leptin signalling and thus in the regulation of appetite, none of the other five genes was hitherto discussed as obesity genes. Iris Heid and her collegue Claudia Lamina from the Ludwigs-Maximilians-Universität München are enthused: "The purely statistical approach of the genome-wide association analysis can depict new aspects of the biology of weight regulation, which were previously unanticipated."

As a next step, the scientists evaluate other anthropometric measures, in order to shed light on different aspects of obesity. In addition, they will expand and include further studies into their analysis as they have realized that the individual studies are all too small, and only by means of collaboration, is it possible to achieve further success here.

Michael van den Heuvel | alfa
Further information:
http://www.helmholtz-muenchen.de
http://www.helmholtz-muenchen.de/en/press/press-releases/press-releases-2009/press-releases-2009-detail/article/11468/44/index.html

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>