Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Obesity research targets the brain’s use of fatty acids

Researchers at the University of Colorado School of Medicine have created a new and exciting mouse model to study how lipid sensing and metabolism in the brain relate to the regulation of energy balance and body weight.

The research team, led by Hong Wang, PhD, created mice with a deficiency of lipoprotein lipase (LPL) in neurons, and observed two important reactions. First, the mouse models ate less and second, they became sedentary. Because LPL is important to the delivery of fatty acids to the brain, these responses spotlight the importance of fatty acid delivery to the brain in the regulation of body weight.

“This work may have important impact in understanding the causes of obesity and providing new treatments for this epidemic of our time,” said Robert H. Eckel, MD, corresponding and senior author of “Deficiency of Lipoprotein Lipase in Neurons Modifies the Regulation of Energy Balance and Leads to Obesity” which was published today in Cell Metabolism.

The genetically-modified mouse (NEXLPL) has a defect in the breakdown of dietary lipoprotein triglycerides into fatty acids in the brain. These mice became obese on a standard chow diet between three and six months. At that point, the mice ate less and were less active.

The research also looked at which areas of the brain have the greatest impact on regulating body weight and learned that the hypothalamus may be the key area to observe as NEXLPL mice have increases in hypothalamic AgRP/NPY gene expression before obesity. AgRP/NPY cause increases in food intake and decreases in energy expenditure. Researchers also noted that the NEXLPL mice demonstrate deficiencies in n-3 fatty acids in the hypothalamus. Overall, this research indicates that the lipoproteins are sensed in the brain by an LPL-dependent pathway and provide lipid signals for the central regulation of body weight and energy balance.

The research team included scientists in the Division of Endocrinology, Metabolism and Diabetes in the Department of Medicine at the CU School of Medicine; the Department of Pharmacology at the University of California Irvine; the Department of Neurogenetics at the Max-Planck-Institute of Experimental Medicine in Germany; the Italian Institute of Technology in Genoa, Italy and the Department of Medicine at Columbia University in New York.

Faculty at the University of Colorado’s School of Medicine work to advance science and improve care. These faculty members include physicians, educators and scientists at University of Colorado Hospital, The Children’s Hospital, Denver Health, National Jewish Health, and the Denver Veterans Affairs Medical Center. Degrees offered by the University of Colorado School of Medicine include doctor of medicine, doctor of physical therapy, and masters of physician assistant studies. The School is located on the University of Colorado’s Anschutz Medical Campus, one of four campuses in the University of Colorado system. For additional news and information, please visit the UC Denver newsroom online.

Contact: Jacque Montgomery, 303-928-9093,

Jacque Montgomery | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>