Obesity genes revealed

As the prevalence of obesity and related health problems continues to increase worldwide, there is considerable effort being devoted to identify genetic mechanisms that control fat storage. Maria De Luca led a team from the University of Alabama at Birmingham, USA, who identified candidate genes using different strains of Drosophila.

On the basis of the results of these fly experiments, the research team then tested three common variations in the human LAMA5 gene and discovered two gene variants that were associated with body shape, one in women of European American descent and the other affecting women of American African descent. As De Luca reports, “We found one variant to be associated with weight and lean mass in both ethnic groups. This variant was also associated with height, total fat mass and HDL-cholesterol, but only in European American women. A different variant was associated with triglyceride levels and HDL-cholesterol in African American women.”

The use of flies in a study of human obesity may seem strange, but according to De Luca “Insects store fat like mammals do, as lipid droplets accumulated in the fat body, the functional equivalent of both mammalian liver and white adipose tissue”. She adds that, “Drosophila share many components of fat biosynthesis, degradation and regulation with humans, including many of those implicated in diabetes and obesity”.

Media Contact

Graeme Baldwin alfa

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Superradiant atoms could push the boundaries of how precisely time can be measured

Superradiant atoms can help us measure time more precisely than ever. In a new study, researchers from the University of Copenhagen present a new method for measuring the time interval,…

Ion thermoelectric conversion devices for near room temperature

The electrode sheet of the thermoelectric device consists of ionic hydrogel, which is sandwiched between the electrodes to form, and the Prussian blue on the electrode undergoes a redox reaction…

Zap Energy achieves 37-million-degree temperatures in a compact device

New publication reports record electron temperatures for a small-scale, sheared-flow-stabilized Z-pinch fusion device. In the nine decades since humans first produced fusion reactions, only a few fusion technologies have demonstrated…

Partners & Sponsors