Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NYU Researchers Identify Process Producing Neuronal Diversity in Fruit Flies’ Visual System


New York University biologists have identified a mechanism that helps explain how the diversity of neurons that make up the visual system is generated.

“Our research uncovers a process that dictates both timing and cell survival in order to engender the heterogeneity of neurons used for vision,” explains NYU Biology Professor Claude Desplan, the study’s senior author.

The study’s other co-authors were: Claire Bertet, Xin Li, Ted Erclik, Matthieu Cavey, and Brent Wells—all postdoctoral fellows at NYU.

Their work, which appears in the latest issue of the journal Cell, centers on neurogenesis—the process by which neurons are created.

A central challenge in developmental neurobiology is to understand how progenitors—stem cells that differentiate to form one or more kinds of cells—produce the vast diversity of neurons, glia, and non-neuronal cells found in the adult Central Nervous System (CNS).

Temporal patterning is one of the core mechanisms generating this diversity in both invertebrates and vertebrates. This process relies on the sequential expression of transcription factors into progenitors, each specifying the production of a distinct neural cell type.

In the Cell paper, the researchers studied the formation of the visual system of the fruit fly Drosophila. Their findings revealed that this process, which relies on temporal patterning of neural progenitors, is more complex than previously thought.

They demonstrate that in addition to specifying the production of distinct neural cell type over time, temporal factors also determine the survival or death of these cells as well as the mode of division of progenitors.

Thus, temporal patterning of neural progenitors generates cell diversity in the adult visual system by specifying the identity, the survival, and the number of each unique neural cell type.

The research was supported, in part, by a grant from the National Institutes of Health (R01 EY017916).

James Devitt | newswise
Further information:

Further reports about: CNS Cell Drosophila NYU Neuronal Visual diversity neural neurons temporal transcription vertebrates

More articles from Life Sciences:

nachricht Atom-Sized Craters Make a Catalyst Much More Active
30.11.2015 | SLAC National Accelerator Laboratory

nachricht Hydra Can Modify Its Genetic Program
30.11.2015 | Université de Genève (University of Geneva)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How Cells in the Developing Ear ‘Practice’ Hearing

Before the fluid of the middle ear drains and sound waves penetrate for the first time, the inner ear cells of newborn rodents practice for their big debut. Researchers at Johns Hopkins report they have figured out the molecular chain of events that enables the cells to make “sounds” on their own, essentially “practicing” their ability to process sounds in the world around them.

The researchers, who describe their experiments in the Dec. 3 edition of the journal Cell, show how hair cells in the inner ear can be activated in the absence...

Im Focus: Climate study finds evidence of global shift in the 1980s

Planet Earth experienced a global climate shift in the late 1980s on an unprecedented scale, fuelled by anthropogenic warming and a volcanic eruption, according to new research published this week.

Scientists say that a major step change, or ‘regime shift’, in the Earth’s biophysical systems, from the upper atmosphere to the depths of the ocean and from...

Im Focus: Innovative Photovoltaics – from the Lab to the Façade

Fraunhofer ISE Demonstrates New Cell and Module Technologies on its Outer Building Façade

The Fraunhofer Institute for Solar Energy Systems ISE has installed 70 photovoltaic modules on the outer façade of one of its lab buildings. The modules were...

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

All Focus news of the innovation-report >>>



Event News

Urbanisation and migration from rural areas challenging agriculture in Eastern Europe

30.11.2015 | Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Latest News

Teamplay IT solution enables more efficient use of protocols

30.11.2015 | Trade Fair News

Greater efficiency and potentially reduced costs with new MRI applications

30.11.2015 | Trade Fair News

Modular syngo.plaza as a comprehensive solution – even for enterprise radiology

30.11.2015 | Trade Fair News

More VideoLinks >>>