NYU Langone researchers identify a signaling pathway as possible target for cancer treatment

“We have known for a long time that blood vessels branch to give rise to new ones and that in some places of our bodies this branching occurs with a reproducible pattern. However, the mechanisms that ensure that new vessels sprout at specific locations had not been uncovered until now,” said Jesús Torres-Vázquez, PhD, assistant professor of Developmental Genetics at the Skirball Institute of Biomolecular Medicine at NYU School of Medicine. “Our study illuminates the genetic basis behind the reproducible pattern of the vasculature and suggests ways in which the formation of new blood vessels could be modulated to treat certain cancers in the future.”

Using the zebrafish embryo as a model system, researchers identified that Semaphorin-PlexinD1 signaling limits the formation of new blood vessels. This signaling pathway works by ensuring that blood vessels make the proper levels of soluble Flt1. Soluble Flt1 is an inhibitor of the Vascular Endothelial Growth Factor (VEGF) pathway, which promotes the growth of new blood vessels.

These findings have broad implications for human health, since changes in the level of soluble Flt1 are associated with cancer, vascular birth defects and pregnancy-related hypertension (preeclampsia).

According to researchers, the Semaphorin-PlexinD1 signaling pathway shows significant promise as a future therapeutic target for cancer treatment to slow the progression of diseases by controlling the blood vessel growth.

In addition, a related study by Dr. Torres-Vázquez illuminates how the development of the brain and its vasculature is coordinated providing greater understanding about why defects form in the brain's blood vessels and how the blood vessels of the brain form. These study findings were published in the July 2011 issue of Developmental Biology.

About NYU Langone Medical Center:

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousand of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org

Media Contact

Christopher Rucas EurekAlert!

More Information:

http://www.nyumc.org

All latest news from the category: Life Sciences and Chemistry

Articles and reports from the Life Sciences and chemistry area deal with applied and basic research into modern biology, chemistry and human medicine.

Valuable information can be found on a range of life sciences fields including bacteriology, biochemistry, bionics, bioinformatics, biophysics, biotechnology, genetics, geobotany, human biology, marine biology, microbiology, molecular biology, cellular biology, zoology, bioinorganic chemistry, microchemistry and environmental chemistry.

Back to home

Comments (0)

Write a comment

Newest articles

Bringing bio-inspired robots to life

Nebraska researcher Eric Markvicka gets NSF CAREER Award to pursue manufacture of novel materials for soft robotics and stretchable electronics. Engineers are increasingly eager to develop robots that mimic the…

Bella moths use poison to attract mates

Scientists are closer to finding out how. Pyrrolizidine alkaloids are as bitter and toxic as they are hard to pronounce. They’re produced by several different types of plants and are…

AI tool creates ‘synthetic’ images of cells

…for enhanced microscopy analysis. Observing individual cells through microscopes can reveal a range of important cell biological phenomena that frequently play a role in human diseases, but the process of…

Partners & Sponsors