Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU Langone researchers identify a signaling pathway as possible target for cancer treatment

16.08.2011
In a new study published in the August 16th issue of Developmental Cell, researchers at NYU Langone Medical Center identified a molecular mechanism that guarantees that new blood vessels form in the right place and with the proper abundance.

"We have known for a long time that blood vessels branch to give rise to new ones and that in some places of our bodies this branching occurs with a reproducible pattern. However, the mechanisms that ensure that new vessels sprout at specific locations had not been uncovered until now," said Jesús Torres-Vázquez, PhD, assistant professor of Developmental Genetics at the Skirball Institute of Biomolecular Medicine at NYU School of Medicine. "Our study illuminates the genetic basis behind the reproducible pattern of the vasculature and suggests ways in which the formation of new blood vessels could be modulated to treat certain cancers in the future."

Using the zebrafish embryo as a model system, researchers identified that Semaphorin-PlexinD1 signaling limits the formation of new blood vessels. This signaling pathway works by ensuring that blood vessels make the proper levels of soluble Flt1. Soluble Flt1 is an inhibitor of the Vascular Endothelial Growth Factor (VEGF) pathway, which promotes the growth of new blood vessels.

These findings have broad implications for human health, since changes in the level of soluble Flt1 are associated with cancer, vascular birth defects and pregnancy-related hypertension (preeclampsia).

According to researchers, the Semaphorin-PlexinD1 signaling pathway shows significant promise as a future therapeutic target for cancer treatment to slow the progression of diseases by controlling the blood vessel growth.

In addition, a related study by Dr. Torres-Vázquez illuminates how the development of the brain and its vasculature is coordinated providing greater understanding about why defects form in the brain's blood vessels and how the blood vessels of the brain form. These study findings were published in the July 2011 issue of Developmental Biology.

About NYU Langone Medical Center:

NYU Langone Medical Center, a world-class, patient-centered, integrated, academic medical center, is one on the nation's premier centers for excellence in clinical care, biomedical research and medical education. Located in the heart of Manhattan, NYU Langone is composed of three hospitals – Tisch Hospital, its flagship acute care facility; the Rusk Institute of Rehabilitation Medicine, the world's first university-affiliated facility devoted entirely to rehabilitation medicine; and the Hospital for Joint Diseases, one of only five hospitals in the nation dedicated to orthopaedics and rheumatology – plus the NYU School of Medicine, which since 1841 has trained thousand of physicians and scientists who have helped to shape the course of medical history. The medical center's tri-fold mission to serve, teach and discover is achieved 365 days a year through the seamless integration of a culture devoted to excellence in patient care, education and research. For more information, go to www.NYULMC.org

Christopher Rucas | EurekAlert!
Further information:
http://www.nyumc.org

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>