Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU, Harvard chemists create bipedal, autonomous DNA walker

06.04.2009
Device mimics role of cell's transportation system

Chemists at New York University and Harvard University have created a bipedal, autonomous DNA "walker" that can mimic a cell's transportation system.

The device, which marks a step toward more complex synthetic molecular motor systems, is described in the most recent issue of the journal Science. For a video demonstration of the walker, go to http://www.nyu.edu/public.affairs/videos/qtime/biped_movie.mov.

Two fundamental components of life's building blocks are DNA, which encodes instructions for making proteins, and motor proteins, such as kinesin, which are part of a cell's transportation system. In nature, single strands of DNA—each containing four molecules, or bases, attached to backbone—self-assemble to form a double helix when their bases match up. Kinesin is a molecular motor that carries various cargoes from one place in the cell to another. Scientists have sought to re-create this capability by building DNA walkers.

Earlier versions of walkers, which move along a track of DNA, did not function autonomously, thereby requiring intervention at each step. A challenge these previous devices faced was coordinating the movement of the walker's legs so they could move in a synchronized fashion without falling off the track.

To create a walker that could move on its own, the NYU and Harvard researchers employed two DNA "fuel strands" (purple and green in the above video). These fuel strands push the walker (blue) along a track of DNA, thereby allowing the walker and the fuel strands to function as a catalytic unit.

The forward progress of the system is driven by the fact that more base pairs are formed every step—a process that creates the energy necessary for movement. As the walker moves along the DNA track, it forms base pairs. Simultaneously, the fuel strands move the walker along by binding to the track and then releasing the walker's legs, thereby allowing the walker to take "steps".

The track's length is 49 nanometers—if the track was one meter long, an actual meter, enlarged proportionally, would be the approximate diameter of the earth.

The walker was created in the laboratory of NYU Chemistry Professor Nadrian Seeman, one of the article's co-authors. The paper's other authors were Tosan Omabegho, a doctoral candidate at Harvard's School of Engineering and Applied Sciences, and Ruojie Sha, a senior research associate in the NYU Chemistry Department.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht New technology offers fast peptide synthesis
28.02.2017 | Massachusetts Institute of Technology

nachricht Biofuel produced by microalgae
28.02.2017 | Tokyo Institute of Technology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New technology offers fast peptide synthesis

28.02.2017 | Life Sciences

WSU research advances energy savings for oil, gas industries

28.02.2017 | Power and Electrical Engineering

Who can find the fish that makes the best sound?

28.02.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>