Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU biologists uncover dynamic between biological clock and neuronal activity

26.09.2012
Biologists at New York University have uncovered one way that biological clocks control neuronal activity — a discovery that sheds new light on sleep-wake cycles and offers potential new directions for research into therapies to address sleep disorders and jetlag.

"The findings answer a significant question — how biological clocks drive the activity of clock neurons, which, in turn, regulate behavioral rhythms," explained Justin Blau, an associate professor in NYU's Department of Biology and the study's senior author.

Their findings appear in the Journal of Biological Rhythms.

Scientists have known that our biological clocks control neuronal activity. But not previously understood is how this process occurs — that is, how does information from biological clocks drive rhythms in the electrical activity of pacemaker neurons that, in turn, drives daily rhythms?

To understand this mechanism, the researchers examined the biological, or circadian, clocks of Drosophila fruit flies, which are commonly used for research in this area. Earlier studies of "clock genes" in fruit flies allowed the identification of similarly functioning genes in humans.

In their study, the researchers focused on eight master pacemaker neurons located in the central brain — these neurons set the timing of the daily transitions between sleep and wake in the fly. Specifically, they were able to isolate these neurons from animals and identify sets of genes differentially expressed between dawn and dusk.

In a series of follow-up experiments, they concentrated on one gene, Ir, whose expression was found to be much higher at dusk than at dawn and much more highly expressed in pacemaker neurons than in the rest of the brain. Ir encodes a potassium channel that helps set the resting state of neurons – and so its rhythmic expression makes it an excellent candidate to help link the biological clock to pacemaker neuron activity. High levels of Ir expression at dusk should make it much harder for pacemaker neurons to signal than the low levels seen at dawn, a finding that fits with earlier studies showing that pacemaker neurons fire more at dawn than at dusk.

The authors also found that genetic manipulations that either increase or decrease Ir levels affect behavioral rhythms. Perhaps more interestingly, these were also associated with changes in the timing and strength of oscillations in the core clock.

"Biology is never as simple as we imagine it will be," explained Blau. "We were looking for an output of the biological clock that would link the core clock to neuronal activity. Ir seems to do this, but it also, remarkably, feeds back to regulate the core clock itself. Feedback loops seem to be deeply engrained into the biological clock and presumably help these clocks work so well."

The study's other co-authors were: Marc Ruben, a doctoral candidate; Mark Drapeau, a former postdoctoral researcher; and Dogukan Mizrak, a doctoral candidate. The study was funded by grants from the National Institutes of Health.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>