Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU biologists use Sinatra-named fly to show how to see the blues -- and the greens

10.10.2011
New York University biologists have identified a new mechanism for regulating color vision by studying a mutant fly named after Frank ('Ol Blue Eyes) Sinatra.

Their findings, which appear in the journal Nature, focus on how the visual system functions in order to preserve the fidelity of color discrimination throughout the life of an organism. They also offer new insights into how genes controlling color detection are turned on and off.

Many biologists study how different cells develop to acquire their fate. The NYU research team, headed by Claude Desplan, a professor of biology, examined how they stay the same. Cells have complex functions that must be maintained through extensive coordination, and failure to do so could lead to "confused" cells whose function is not clear. This is particularly important for cells, such as neurons, which live for a long time—usually the entire lifetime of an animal.

The NYU researchers focused on the photoreceptor neurons in the retina of the fruit fly Drosophila. Drosophila is a powerful model for studying eye development as it is amenable to very precise genetic manipulations. This allows researchers to analyze how the visual system functions when its different elements are affected.

The work builds upon a previous finding from Desplan's laboratory. In a 2005 study, published in Cell, Desplan and his colleagues identified a molecular pathway by which one photoreceptor cell type controls its choice to be sensitive to one color of light vs. another—in this instance, green vs. blue. This sensitivity is due to the presence of light-sensing proteins, Rhodopsins: each photoreceptor makes a decision to express either blue light-sensitive Rhodopsin5 or green light-sensitive Rhodopsin6, but not both. This exclusive expression of different Rhodopsins underlies the fly's ability to discriminate colors.

In the Nature study, the researchers explored a phenomenon that occurs over the lifetime of an organism. Because Rhodopsins are continually produced in the eye, the researchers wanted to know what keeps each photoreceptor from starting to make the wrong Rhodopsin later in life. Their findings showed that, in fact, the Rhodopsin itself can prevent the gene encoding another Rhodopsin from turning on incorrectly.

The researchers observed that, in mutant flies that have a non-functioning Rhodopsin6 (green-sensitive) gene, the photoreceptors that would have normally produced this Rhodopsin instead slowly start to make the blue-sensitive Rhodopsin5. After two weeks, essentially all of these photoreceptors were observed making the blue Rhodopsin. The authors named one of the mutations in Rhodopsin6 gene "Frank Sinatra" because presumably it makes old eyes more sensitive to blue light—they don't actually become blue in color.

These findings showed, then, that in normal flies, green Rhodopsin6 maintains repression of the blue Rhodopsin5 gene. This result is surprising—previously, it had not been known that Rhodopsins could control how other Rhodopsins are made.

The neurons governing our sense of smell are organized in a similar fashion. Once each olfactory neuron, which is responsible for this sense, makes a functional olfactory receptor protein, that receptor can prevent other genes encoding different olfactory receptors from being turned on in the same cell.

While the researchers did not investigate what brings about this change in Rhodopsins, they think of this as a maintenance mechanism that prevents cells from having blue and green Rhodopsins together.

"The two types of photoreceptors could be connected to different neuronal circuits in the brain which interpret the information they receive from photoreceptors as being about blue or green light," noted Daniel Vasiliauskas, the leading author of the paper and a post-doctoral fellow at NYU. "Thus changing the Rhodopsin that a photoreceptor makes could lead to sensory confusion and reduce the fly's ability to tell apart different colors."

"An alternative possibility is that our findings point to a mechanism that allows a fly to adapt to changing circumstances," he added. "If we keep flies in the dark for extended periods of time, we start seeing the same thing happening: blue Rhodopsin5 is made in the green Rhodopsin6-producing photoreceptors, leading to cells that have both. This change could be associated with changes in the downstream circuits that must now adapt to correctly interpret the information they receive."

The research was supported by a grant from the National Institutes of Health.

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>