Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYSCF Fellow lead author on study that creates blood vessel cells from stem cells

22.01.2010
Dr. Daylon James and colleagues have generated plentiful supply of endothelial cells that are suitable for therapeutic use

New York Stem Cell Foundation (NYSCF)-Druckenmiller Fellow, Daylon James, PhD, of Weill Cornell Medial College, is lead author on a study defining conditions for generating a plentiful supply of endothelial (vessel lining) cells that are suitable for therapeutic use. Dr. James and his colleagues created a human embryonic stem cell (hESC) "reporter" line that can be used to measure endothelial cell production and activity.

The study, Expansion and maintenance of human embryonic stem cell–derived endothelial cells by TGFâ inhibition is Id1 dependent, was published in the online edition of Nature Biotechnology on January 17th, 2010, and will also appear in the journal's print edition. In addition to Dr. James, whose work is funded by NYSCF, contributors to the study also included NYSCF-Druckenmiller Fellows, Drs. Gabsang Lee and Marco Seandel.

Using the reporter line, Dr. James and his colleagues were able to monitor the emergence of endothelial cells in live cultures, and screen for small bioactive molecules that increased their yield. By this method, they were able to indentify a compound that robustly increased the amount of endothelial cells produced. This work establishes a standard methodology for generating functional endothelial cells from hESCs using conditions that are suited to clinical application. These cells can now be routinely and economically produced on scales that make pre-clinical assessment of their efficacy practical in large animal models of vascular disease.

"We are very proud of Dr. James. These findings bring us closer to having functional endothelial cells available for studying vascular disease," says Susan L. Solomon, NYSCF's founder and CEO.

As advancements in induced pluripotent stem (iPS) cell technology continue, hESC research like that of Dr. James is essential for the field of stem cell research. Embryonic stem cells are still the gold standard for monitoring pluripotency and differentiation capabilities.

"It is research like this that brings us closer to cures for the major diseases of our time," said Dr. Kevin Eggan, Chief Scientific Officer of NYSCF. "Daylon is one of the premier young scientists in the field of stem cell research and we are excited to have him in our fellowship program."

About The New York Stem Cell Foundation

Founded in 2005, The New York Stem Cell Foundation is dedicated to furthering stem cell research to advance the search for cures of the major diseases of our time. NYSCF opened the first privately funded stem cell laboratory in New York City in March 2006 to serve as a "safe haven" where scientists can conduct advanced stem cell research free of federal restrictions. The organization supports scientists engaged in stem cell research through grants, fellowships and symposia; runs collaborative, state-of-the-art research facilities directly focused on curing disease; and educates the public about the importance and potential benefits of stem cell research. For more information, visit www.nyscf.org.

Ruth Jarmul | EurekAlert!
Further information:
http://www.nyscf.org

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>