Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYSCF Fellow lead author on study that creates blood vessel cells from stem cells

22.01.2010
Dr. Daylon James and colleagues have generated plentiful supply of endothelial cells that are suitable for therapeutic use

New York Stem Cell Foundation (NYSCF)-Druckenmiller Fellow, Daylon James, PhD, of Weill Cornell Medial College, is lead author on a study defining conditions for generating a plentiful supply of endothelial (vessel lining) cells that are suitable for therapeutic use. Dr. James and his colleagues created a human embryonic stem cell (hESC) "reporter" line that can be used to measure endothelial cell production and activity.

The study, Expansion and maintenance of human embryonic stem cell–derived endothelial cells by TGFâ inhibition is Id1 dependent, was published in the online edition of Nature Biotechnology on January 17th, 2010, and will also appear in the journal's print edition. In addition to Dr. James, whose work is funded by NYSCF, contributors to the study also included NYSCF-Druckenmiller Fellows, Drs. Gabsang Lee and Marco Seandel.

Using the reporter line, Dr. James and his colleagues were able to monitor the emergence of endothelial cells in live cultures, and screen for small bioactive molecules that increased their yield. By this method, they were able to indentify a compound that robustly increased the amount of endothelial cells produced. This work establishes a standard methodology for generating functional endothelial cells from hESCs using conditions that are suited to clinical application. These cells can now be routinely and economically produced on scales that make pre-clinical assessment of their efficacy practical in large animal models of vascular disease.

"We are very proud of Dr. James. These findings bring us closer to having functional endothelial cells available for studying vascular disease," says Susan L. Solomon, NYSCF's founder and CEO.

As advancements in induced pluripotent stem (iPS) cell technology continue, hESC research like that of Dr. James is essential for the field of stem cell research. Embryonic stem cells are still the gold standard for monitoring pluripotency and differentiation capabilities.

"It is research like this that brings us closer to cures for the major diseases of our time," said Dr. Kevin Eggan, Chief Scientific Officer of NYSCF. "Daylon is one of the premier young scientists in the field of stem cell research and we are excited to have him in our fellowship program."

About The New York Stem Cell Foundation

Founded in 2005, The New York Stem Cell Foundation is dedicated to furthering stem cell research to advance the search for cures of the major diseases of our time. NYSCF opened the first privately funded stem cell laboratory in New York City in March 2006 to serve as a "safe haven" where scientists can conduct advanced stem cell research free of federal restrictions. The organization supports scientists engaged in stem cell research through grants, fellowships and symposia; runs collaborative, state-of-the-art research facilities directly focused on curing disease; and educates the public about the importance and potential benefits of stem cell research. For more information, visit www.nyscf.org.

Ruth Jarmul | EurekAlert!
Further information:
http://www.nyscf.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>