Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUS Team Develops World’s First Microfluidic Device for Rapid Separation and Detection of Non-Spherical Bioparticles

16.04.2013
A bioengineering research team from the National University of Singapore (NUS) team led by Associate Professor Zhang Yong has developed a novel microfluidic device for efficient, rapid separation and detection of non-spherical bioparticles.

Microfluidic devices deal with the behavior, precise control and manipulation of fluids that are geometrically constrained to sub-millimeter scale. This new device, which separates and detects non-spherical bioparticles such as pathogenic bacteria and malaria infected red blood cells, can potentially be used for rapid medical diagnostics and treatment.

Bioparticles such as bacteria and red blood cells (RBC) are non-spherical. Many are also deformable – for example, our blood cells may change shape when affected by different pathogens in our body. Hence, the team’s shape-sensitive technique is a significant discovery. Currently, separation techniques are mostly designed for spherical particles.

Though the team is focusing mainly on the rapid separation and detection of bacteria from pathological samples at the moment, their device has potential as a rapid diagnostic tool as well. Their new technique can potentially replace an age-old method of detection based on bacterial culture.

Explained Assoc Prof Zhang, “The old method was developed about 100 years ago, but it is still being used today as the mainstream technique because no new technique is available for effective separation of bacteria from pathological samples like blood. Many of the pathogenic bacteria are non-spherical but most of microfluidic devices today are for separating spherical cells. Our method uses a special I-shape pillar array which is capable of separating non-spherical or irregularly-shaped bioparticles.”

The method developed by the NUS team can complete the diagnosis process in less than an hour compared to 24-48 hours required for bacterial detection by using conventional methods. Their device is also efficient in separating red blood cells (RBCs) from blood samples as RBCs are non-spherical. This enables rapid detection of diagnostic biomarkers which reside in blood sample.

One of the most challenging aspects for the team was designing and fabricating a device that is capable of detecting even the smallest dimension of bioparticles and still provide reasonably good throughput (amount which can be processed through the system in a given time).

How it works and moving forward

Scientists have tried to address the problem of separating non-spherical bioparticles by using techniques such as restricting the flow of particles but these have not shown to be as effective. However, the NUS Bioengineering team’s I-shape pillar array device has proven to be successful.

The I-shape pillar array induces rotational movements of the non-spherical particles which in turn increases the effective hydrodynamic size of the bioparticles flowing in the device, allowing for efficient separation. Their design is able to provide 100 percent separation of RBCs from blood samples, outperforming conventional cylindrical pillar array designs.

The device can also potentially separate bioparticles with diverse shapes and sizes. The team has tested their device successfully on rod-shaped bacteria such as Escherichia coli (common bacteria which can cause food poisoning). So far, this has been difficult to achieve using conventional microfluidic chips.

The team’s findings were published in the reputed journal Nature Communications on 27 March 2013, in a manuscript titled “Rotational separation of non-spherical bioparticles using I-shaped pillar arrays in a microfluidic device”.

Said Assoc Prof Zhang, “With our current findings, we hope to move on to separate other non-spherical bioparticles like fungi, with higher throughput and efficiency, circumventing the spherical size dependency of current techniques.”

Photographs can be downloaded via this link: https://www.yousendit.com/download/UVJnTkZpTk1waFJ2TzhUQw(file expires on 30 April 2013). Please attribute photograph credits to: National University of Singapore.

About National University of Singapore (NUS)
A leading global university centred in Asia, the National University of Singapore (NUS) is Singapore’s flagship university which offers a global approach to education and research, with a focus on Asian perspectives and expertise.
NUS has 16 faculties and schools across three campuses. Its transformative education includes a broad-based curriculum underscored by multi-disciplinary courses and cross-faculty enrichment. Over 37,000 students from 100 countries enrich the community with their diverse social and cultural perspectives.

NUS has three Research Centres of Excellence (RCE) and 23 university-level research institutes and centres. It is also a partner in Singapore’s 5th RCE. NUS shares a close affiliation with 16 national-level research institutes and centres. Research activities are strategic and robust, and NUS is well-known for its research strengths in engineering, life sciences and biomedicine, social sciences and natural sciences. It also strives to create a supportive and innovative environment to promote creative enterprise within its community.

For more information, please visit www.nus.edu.sg

Karen LOH | Newswise
Further information:
http://www.nus.edu.sg

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>