Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUS Researchers Developed World’s First Instant Fluorescent Sensor to Detect Milk Fat

14.10.2014

Portable and low-cost device to measure milk fat using novel sensor in the works

A team of researchers from the National University of Singapore (NUS) has pioneered the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk. When the light purplish sensor is mixed with a milk sample, it transmits fluorescent signals of orange hues instantly under light when fat is detected, with brighter shades when the concentration of fat in the milk sample increases.


National University of Singapore

A team of NUS researchers, led by Prof Chang Young-Tae, has developed the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk.

This novel sensor, developed by a research team led by Professor Chang Young-Tae of the Department of Chemistry at the NUS Faculty of Science, is being applied to the development of a device for rapid on-site measurement of milk fat, which is especially useful in areas such as dairy farms in developing countries. This device could also help enhance the current milk quality control process, particularly in resource-limited regions.

The findings of this study were first published in the journal Chemical Communications on 8 July 2014.

Measuring milk fat and quality

More than six billion people around the world consume milk regularly, making milk a major agricultural product in many countries. It is also a multi-billion dollar industry. As fat content is associated with the levels of protein and vitamins in milk, it is directly correlated with the nutritional and marketing value of milk.

For many small scale dairy farmers who sell their cows’ milk to large organisations that produce dairy products, there is a need for an accurate and rapid device which is handy yet inexpensive, to detect the level of fat present in the milk. Such a device helps the farmers segregate and price the milk for sale, as well as to enhance the milk quality control process.

Prevailing milk fat measurement methods include infrared analysis, lactometers, and Gerber’s method. Infrared methods are very complex and expensive, but extremely fast. Lactometers are simple and economical, but do not reveal the exact amount of fat. Gerber’s method, on the other hand, provides accurate readings, but requires complicated handling due to the use corrosive sulfuric acid, making it unfavourable for untrained workers.

To address this technological gap, the NUS research team sought to develop a method that is low-cost, easy to use and efficient.

Milk Orange: A novel fluorescent sensor to detect milk fat

Fluorescent dyes have been widely used as sensors for analytical purposes because of their high sensitivity, fast response time and technical simplicity.

Under the supervision of Prof Chang, the research team screened more than 10,000 fluorescent dyes that are part of the Diversity Oriented Fluorescence Library (DOFL), which was developed by Prof Chang over the last decade.

The researchers successfully identified a light purplish non-toxic compound which demonstrated remarkable fluorescence signal increments of orange hues with increasing concentrations of milk fat under light. The team conducted further experiments to ensure that the compound, coined Milk Orange, responds to fat, and not to other substances in milk such as proteins.

To explore Milk Orange’s applicability, the team tested it in various milk samples which are readily available in local supermarkets. A total of 16 types of milk from seven brands were tested. The experiments concluded that Milk Orange can be applied universally and achieve instant results.

Portable, convenient and inexpensive milk fat device to measure milk fat in the works

With Milk Orange proving to be efficient in detecting the level of fat in different types of milk, Prof Chang and his team are now developing a portable, convenient and inexpensive detector for rapid on-the-spot milk fat measurement. They are also planning to set-up a spin-off company to commercialise this technology. The team looks forward to working with milk production and processing companies to apply the technology towards improving the current milk quality control process.

Contact Information

Carolyn Fong
carolyn@nus.edu.sg
Phone: +65 6516 5399

Carolyn Fong | newswise

Further reports about: Fat Instant NUS Sensor Singapore fluorescent measurement milk quality control

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

White graphene makes ceramics multifunctional

16.01.2018 | Materials Sciences

Breaking bad metals with neutrons

16.01.2018 | Materials Sciences

ISFH-CalTeC is “designated test centre” for the confirmation of solar cell world records

16.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>