Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


NUS Researchers Developed World’s First Instant Fluorescent Sensor to Detect Milk Fat


Portable and low-cost device to measure milk fat using novel sensor in the works

A team of researchers from the National University of Singapore (NUS) has pioneered the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk. When the light purplish sensor is mixed with a milk sample, it transmits fluorescent signals of orange hues instantly under light when fat is detected, with brighter shades when the concentration of fat in the milk sample increases.

National University of Singapore

A team of NUS researchers, led by Prof Chang Young-Tae, has developed the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk.

This novel sensor, developed by a research team led by Professor Chang Young-Tae of the Department of Chemistry at the NUS Faculty of Science, is being applied to the development of a device for rapid on-site measurement of milk fat, which is especially useful in areas such as dairy farms in developing countries. This device could also help enhance the current milk quality control process, particularly in resource-limited regions.

The findings of this study were first published in the journal Chemical Communications on 8 July 2014.

Measuring milk fat and quality

More than six billion people around the world consume milk regularly, making milk a major agricultural product in many countries. It is also a multi-billion dollar industry. As fat content is associated with the levels of protein and vitamins in milk, it is directly correlated with the nutritional and marketing value of milk.

For many small scale dairy farmers who sell their cows’ milk to large organisations that produce dairy products, there is a need for an accurate and rapid device which is handy yet inexpensive, to detect the level of fat present in the milk. Such a device helps the farmers segregate and price the milk for sale, as well as to enhance the milk quality control process.

Prevailing milk fat measurement methods include infrared analysis, lactometers, and Gerber’s method. Infrared methods are very complex and expensive, but extremely fast. Lactometers are simple and economical, but do not reveal the exact amount of fat. Gerber’s method, on the other hand, provides accurate readings, but requires complicated handling due to the use corrosive sulfuric acid, making it unfavourable for untrained workers.

To address this technological gap, the NUS research team sought to develop a method that is low-cost, easy to use and efficient.

Milk Orange: A novel fluorescent sensor to detect milk fat

Fluorescent dyes have been widely used as sensors for analytical purposes because of their high sensitivity, fast response time and technical simplicity.

Under the supervision of Prof Chang, the research team screened more than 10,000 fluorescent dyes that are part of the Diversity Oriented Fluorescence Library (DOFL), which was developed by Prof Chang over the last decade.

The researchers successfully identified a light purplish non-toxic compound which demonstrated remarkable fluorescence signal increments of orange hues with increasing concentrations of milk fat under light. The team conducted further experiments to ensure that the compound, coined Milk Orange, responds to fat, and not to other substances in milk such as proteins.

To explore Milk Orange’s applicability, the team tested it in various milk samples which are readily available in local supermarkets. A total of 16 types of milk from seven brands were tested. The experiments concluded that Milk Orange can be applied universally and achieve instant results.

Portable, convenient and inexpensive milk fat device to measure milk fat in the works

With Milk Orange proving to be efficient in detecting the level of fat in different types of milk, Prof Chang and his team are now developing a portable, convenient and inexpensive detector for rapid on-the-spot milk fat measurement. They are also planning to set-up a spin-off company to commercialise this technology. The team looks forward to working with milk production and processing companies to apply the technology towards improving the current milk quality control process.

Contact Information

Carolyn Fong
Phone: +65 6516 5399

Carolyn Fong | newswise

Further reports about: Fat Instant NUS Sensor Singapore fluorescent measurement milk quality control

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>