Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUS Researchers Developed World’s First Instant Fluorescent Sensor to Detect Milk Fat

14.10.2014

Portable and low-cost device to measure milk fat using novel sensor in the works

A team of researchers from the National University of Singapore (NUS) has pioneered the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk. When the light purplish sensor is mixed with a milk sample, it transmits fluorescent signals of orange hues instantly under light when fat is detected, with brighter shades when the concentration of fat in the milk sample increases.


National University of Singapore

A team of NUS researchers, led by Prof Chang Young-Tae, has developed the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk.

This novel sensor, developed by a research team led by Professor Chang Young-Tae of the Department of Chemistry at the NUS Faculty of Science, is being applied to the development of a device for rapid on-site measurement of milk fat, which is especially useful in areas such as dairy farms in developing countries. This device could also help enhance the current milk quality control process, particularly in resource-limited regions.

The findings of this study were first published in the journal Chemical Communications on 8 July 2014.

Measuring milk fat and quality

More than six billion people around the world consume milk regularly, making milk a major agricultural product in many countries. It is also a multi-billion dollar industry. As fat content is associated with the levels of protein and vitamins in milk, it is directly correlated with the nutritional and marketing value of milk.

For many small scale dairy farmers who sell their cows’ milk to large organisations that produce dairy products, there is a need for an accurate and rapid device which is handy yet inexpensive, to detect the level of fat present in the milk. Such a device helps the farmers segregate and price the milk for sale, as well as to enhance the milk quality control process.

Prevailing milk fat measurement methods include infrared analysis, lactometers, and Gerber’s method. Infrared methods are very complex and expensive, but extremely fast. Lactometers are simple and economical, but do not reveal the exact amount of fat. Gerber’s method, on the other hand, provides accurate readings, but requires complicated handling due to the use corrosive sulfuric acid, making it unfavourable for untrained workers.

To address this technological gap, the NUS research team sought to develop a method that is low-cost, easy to use and efficient.

Milk Orange: A novel fluorescent sensor to detect milk fat

Fluorescent dyes have been widely used as sensors for analytical purposes because of their high sensitivity, fast response time and technical simplicity.

Under the supervision of Prof Chang, the research team screened more than 10,000 fluorescent dyes that are part of the Diversity Oriented Fluorescence Library (DOFL), which was developed by Prof Chang over the last decade.

The researchers successfully identified a light purplish non-toxic compound which demonstrated remarkable fluorescence signal increments of orange hues with increasing concentrations of milk fat under light. The team conducted further experiments to ensure that the compound, coined Milk Orange, responds to fat, and not to other substances in milk such as proteins.

To explore Milk Orange’s applicability, the team tested it in various milk samples which are readily available in local supermarkets. A total of 16 types of milk from seven brands were tested. The experiments concluded that Milk Orange can be applied universally and achieve instant results.

Portable, convenient and inexpensive milk fat device to measure milk fat in the works

With Milk Orange proving to be efficient in detecting the level of fat in different types of milk, Prof Chang and his team are now developing a portable, convenient and inexpensive detector for rapid on-the-spot milk fat measurement. They are also planning to set-up a spin-off company to commercialise this technology. The team looks forward to working with milk production and processing companies to apply the technology towards improving the current milk quality control process.

Contact Information

Carolyn Fong
carolyn@nus.edu.sg
Phone: +65 6516 5399

Carolyn Fong | newswise

Further reports about: Fat Instant NUS Sensor Singapore fluorescent measurement milk quality control

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>