Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUS Researchers Developed World’s First Instant Fluorescent Sensor to Detect Milk Fat

14.10.2014

Portable and low-cost device to measure milk fat using novel sensor in the works

A team of researchers from the National University of Singapore (NUS) has pioneered the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk. When the light purplish sensor is mixed with a milk sample, it transmits fluorescent signals of orange hues instantly under light when fat is detected, with brighter shades when the concentration of fat in the milk sample increases.


National University of Singapore

A team of NUS researchers, led by Prof Chang Young-Tae, has developed the world’s first fluorescent sensor – called Milk Orange – that rapidly identifies the presence of fat in milk.

This novel sensor, developed by a research team led by Professor Chang Young-Tae of the Department of Chemistry at the NUS Faculty of Science, is being applied to the development of a device for rapid on-site measurement of milk fat, which is especially useful in areas such as dairy farms in developing countries. This device could also help enhance the current milk quality control process, particularly in resource-limited regions.

The findings of this study were first published in the journal Chemical Communications on 8 July 2014.

Measuring milk fat and quality

More than six billion people around the world consume milk regularly, making milk a major agricultural product in many countries. It is also a multi-billion dollar industry. As fat content is associated with the levels of protein and vitamins in milk, it is directly correlated with the nutritional and marketing value of milk.

For many small scale dairy farmers who sell their cows’ milk to large organisations that produce dairy products, there is a need for an accurate and rapid device which is handy yet inexpensive, to detect the level of fat present in the milk. Such a device helps the farmers segregate and price the milk for sale, as well as to enhance the milk quality control process.

Prevailing milk fat measurement methods include infrared analysis, lactometers, and Gerber’s method. Infrared methods are very complex and expensive, but extremely fast. Lactometers are simple and economical, but do not reveal the exact amount of fat. Gerber’s method, on the other hand, provides accurate readings, but requires complicated handling due to the use corrosive sulfuric acid, making it unfavourable for untrained workers.

To address this technological gap, the NUS research team sought to develop a method that is low-cost, easy to use and efficient.

Milk Orange: A novel fluorescent sensor to detect milk fat

Fluorescent dyes have been widely used as sensors for analytical purposes because of their high sensitivity, fast response time and technical simplicity.

Under the supervision of Prof Chang, the research team screened more than 10,000 fluorescent dyes that are part of the Diversity Oriented Fluorescence Library (DOFL), which was developed by Prof Chang over the last decade.

The researchers successfully identified a light purplish non-toxic compound which demonstrated remarkable fluorescence signal increments of orange hues with increasing concentrations of milk fat under light. The team conducted further experiments to ensure that the compound, coined Milk Orange, responds to fat, and not to other substances in milk such as proteins.

To explore Milk Orange’s applicability, the team tested it in various milk samples which are readily available in local supermarkets. A total of 16 types of milk from seven brands were tested. The experiments concluded that Milk Orange can be applied universally and achieve instant results.

Portable, convenient and inexpensive milk fat device to measure milk fat in the works

With Milk Orange proving to be efficient in detecting the level of fat in different types of milk, Prof Chang and his team are now developing a portable, convenient and inexpensive detector for rapid on-the-spot milk fat measurement. They are also planning to set-up a spin-off company to commercialise this technology. The team looks forward to working with milk production and processing companies to apply the technology towards improving the current milk quality control process.

Contact Information

Carolyn Fong
carolyn@nus.edu.sg
Phone: +65 6516 5399

Carolyn Fong | newswise

Further reports about: Fat Instant NUS Sensor Singapore fluorescent measurement milk quality control

More articles from Life Sciences:

nachricht Historical rainfall levels are significant in carbon emissions from soil
30.05.2017 | University of Texas at Austin

nachricht 3D printer inks from the woods
30.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New Method of Characterizing Graphene

Scientists have developed a new method of characterizing graphene’s properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials. Researchers from the Swiss Nanoscience Institute and the University of Basel’s Department of Physics reported their findings in the journal Physical Review Applied.

Graphene consists of a single layer of carbon atoms. It is transparent, harder than diamond and stronger than steel, yet flexible, and a significantly better...

Im Focus: Strathclyde-led research develops world's highest gain high-power laser amplifier

The world's highest gain high power laser amplifier - by many orders of magnitude - has been developed in research led at the University of Strathclyde.

The researchers demonstrated the feasibility of using plasma to amplify short laser pulses of picojoule-level energy up to 100 millijoules, which is a 'gain'...

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

3D printer inks from the woods

30.05.2017 | Life Sciences

How circadian clocks communicate with each other

30.05.2017 | Life Sciences

Graphene and quantum dots put in motion a CMOS-integrated camera that can see the invisible

30.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>