Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NUS Researchers Developed World’s First Fluorescent Sensor to Detect Common Illicit Date Rape Drug Within Seconds

31.03.2014

A team of researchers from the National University of Singapore (NUS) has developed the world’s first fluorescent sensor to identify the presence of a drug known as GHB that is commonly used to spike beverages. When the sensor is mixed with a sample of a beverage containing GHB, the mixture changes colour in less than 30 seconds, making detection of the drug fast and easy.

This simple mix-and-see discovery, led by Professor Chang Young-Tae of the Department of Chemistry at the NUS Faculty of Science, is a novel scientific breakthrough that contributes towards prevention of drug-facilitated sexual assault problems.


National University of Singapore

GHB Orange, the fluorescent sensor for detecting date rape drug GHB (bottle in top left), under UV light with the drug GHB (bottle in top right), and when it was mixed into red wine without GHB (vial in front left) and with GHB (vial in front right)

The findings were first published in the journal Chemical Communications earlier this year.

GHB: notorious drug used in drink spiking

... more about:
»Drug »NUS »Sensor »Singapore »colour »drink »fluorescent

Gamma-hydroxybutyric acid, commonly known as GHB, is a central nervous system depressant that has been used in the medical setting as a general anaesthetic. In the 1990s, it gained notoriety as a drug allegedly used in instances of drink spiking. Today, it is one of the most commonly used date rape drugs, rendering the victim incapacitated and vulnerable to sexual assault.

As GHB is odourless, colourless and slightly salty, it is almost undetectable when mixed in a drink, thus making it desirable to sexual predators. A small amount of between two to four grams of GHB will interfere with the motor and speech control of a person, and may even induce a coma-like sleep. GHB takes effect within 15 to 30 minutes, and the effect can last for three to six hours. It is only detectable in urine six to 12 hours after ingestion.

Novel fluorescent sensor to detect GHB

Fluorescent dyes have been widely used as sensors for analytical purposes because of their high sensitivity, fast response time and technical simplicity.

Under the supervision of Prof Chang, the team of researchers, comprising Dr Zhai Duanting, a Research Fellow, Mr Xu Wang, a PhD candidate, as well as Mr Elton Tan, a recent graduate, of the Department of Chemistry at the NUS Faculty of Science, screened 5,500 dyes generated from different fluorescent scaffolds. These fluorescent scaffolds have been used to construct the Diversity Oriented Fluorescence Library (DOFL) that was developed by Prof Chang over the last decade.

The team shortlisted 17 fluorescent compounds and further tested them with a wide range of different GHB concentrations. Through this, the team identified that an orange fluorescent compound, coined GHB Orange, changes colour when it is mixed with GHB.

In order to examine the efficiency of GHB Orange, the team tested its detection capability by mixing a small amount of it with samples of various beverages, ranging from alcoholic, non-alcoholic, coloured and colourless drinks, which contain GHB. The test revealed differences in the fluorescence intensity between GHB-free and GHB-spiked beverages. For drinks that are translucent or of a light colour, such as water or vodka, the change in colour can be easily detected with the naked eye. The change in the colour of darker drinks, such as Cola and whiskey, requires the aid of additional lighting to better detect the change.

Remarkably, this detection can be done through a simple mix-and-see process, which takes less than 30 seconds.

Future plans

While GHB Orange has proven to be efficient in detecting GHB in beverages, there is a need to develop a test kit that is convenient for users to use and carry around. Prof Chang and his team intend to work with industry partners to develop a handy and cheap device for GHB detection.

Carolyn FONG | newswise
Further information:
http://www.nus.edu.sg

Further reports about: Drug NUS Sensor Singapore colour drink fluorescent

More articles from Life Sciences:

nachricht Rochester scientists discover gene controlling genetic recombination rates
23.04.2018 | University of Rochester

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>