Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear Receptors Battle it Out During Metamorphosis in New Fruit Fly Model

07.10.2011
Growing up just got more complicated. Thomas Jefferson University biochemistry researchers have shown for the first time that the receptor for a major insect molting hormone doesn’t activate and repress genes as once thought. In fact, it only activates genes, and it is out-competed by a heme-binding receptor to repress the same genes during the larval to pupal transition in the fruit fly.

For the last 20 years, the nuclear receptor known as EcR/Usp was thought to solely control gene transcription depending on the presence or absence of the hormone ecdysone, respectively. But it appears, researchers found, that E75A, a heme-binding receptor that represses genes, replaces EcR/Usp during metamorphosis when ecdysone is absent.

The findings, which could shed light on new ways to better understand and treat hormone-dependent diseases, such as cancer, were published in the online October 6 issue of Molecular Cell.

“This is the first time we’ve shown that a steroid hormone receptor and heme-binding nuclear receptor are even interacting with each other,” said Danika M. Johnston, Ph.D., of the Department Biochemistry and Molecular Biology, Thomas Jefferson University. “We didn’t really think the two were competing against each other to bind to the same sequence of DNA and regulate the same genes.”

More specifically, in the absence of ecdysone, both ecdysone receptor subunits localize to the cytoplasm, and the heme-binding nuclear receptor E75A replaces EcR/Usp at common target sequences in several genes. During the larval-pupal transition, a switch from gene activation by EcR/Usp to gene repression by E75A is triggered by a decrease in ecdysone concentration and by direct repression of the EcR gene by E75A.

An important nuance of this system is that the heme-binder E75A is sensitive to the amount of nitric oxide in the cell, and it cannot completely fulfill its repressive potential at high levels of this important molecule. Thus, the uncovered system uses changing amounts of two ligands, a steroid hormone and a gas, to regulate transcription during development.

“These were quite unexpected findings, given the longstanding thoughts of this process,” said Dr. Johnston, “but we just didn’t have the tools in the past to figure out what was going on mechanistically. We’re painting a clearer picture now.”

Knowing how nuclear receptors regulate gene expression in animal models can provide useful information in the development of drugs. Today, the molecular targets of roughly 13 percent of U.S. Food and Drug Administration approved drugs are nuclear receptors.

“It’s very possible that similar situations exist in the mammalian system. That could ultimately lead to different treatments that regulate hormone levels in hormone-dependent diseases, such as cancer,” said Dr. Johnston.

This investigation took place in the lab of co-author Alexander M. Mazo, Ph.D., a professor of the Department of Biochemistry and Molecular Biology at Jefferson.

Steve Graff | Newswise Science News
Further information:
http://www.jefferson.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>