Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear Pores Call on Different Assembly Mechanisms at Different Cell Cycle Stages

11.06.2010
Nuclear pores are the primary gatekeepers mediating communication between a cell's nucleus and its cytoplasm. Recently these large multiprotein transport channels have also been shown to play an essential role in developmental gene regulation. Despite the critical role in nuclear function, however, nuclear pore complexes remain somewhat shadowy figures, with many details about their formation shrouded in mystery.

Now a team of investigators from the Salk Institute for Biological Studies has illuminated key differences in the mechanisms behind nuclear pores formed at two distinct stages in the cell cycle. Their findings, to be published in the June 12 issue of Cell, may provide insights into conditions such as cancer, developmental defects, and sudden cardiac arrest.

Nuclear pores, which are built from 30 different proteins, assemble during interphase, the period when the nucleus expands and replicates its DNA, and following mitosis, when the nuclear membrane reforms around the segregated chromosomes to create two identical nuclei.

But, explains Martin Hetzer, Ph.D., Hearst Endowment associate professor in Salk's Molecular and Cell Biology Laboratory, who led the study, there has been a longstanding question about whether assembly pathways at the distinct cell cycle stages use different or similar mechanisms. "Interphase assembly is different from post-mitotic assembly in that the nuclear membrane is fully formed around chromatin," he says, "whereas post-mitotic assembly occurs into the reforming nuclear membrane. So the topology of the nuclear membrane is very different during these two cell cycle stages."

While some aspects of post-mitotic assembly were known, almost nothing was understood about how assembly of the pores occurs during interphase, when the cell doubles the number of nuclear pores to provide sufficient levels of NPC components for the two daughter cells. A parallel process takes place during differentiation of an oocyte, when millions of nuclear pore components are integrated into the nuclear membrane of the egg cell, so any findings about interphase assembly could also be relevant to embryonic development.

"We were able to show for the first time that there are two distinct mechanisms behind how these large protein complexes assemble to accommodate cell cycle-dependent differences in nuclear membrane topology," says Hetzer.

The team identified a key difference in how the Nup107/160 complex, which is essential for NPC formation, is targeted to new assembly sites in the NE. Surprisingly, one of the complex members, Nup133, is directed to the pore assembly site via a completely novel mechanism that involves sensing of the nuclear membrane's curvature. "The sensor was identified in a bioinformatics screen, and it was not known whether it was really functional in vivo," says co-first author Christine Doucet, Ph.D., a postdoctoral fellow in Hetzer's lab. "But we thought it would fit in with the topology of the nuclear membrane and the sites of the new nuclear pore complexes because they are highly curved. So if the sensor was playing a role in assembly, it was a really neat way to coordinate the assembly of all the components at the right position and the right time."

The second difference the group discovered is that in post-mitotic assembly, but not during interphase, a protein called ELYS played a key role in directing the NUP107/160 complex, which is critical to the formation of pores, to the assembly sites. In contrast, the transmembrane Nup POM121, is specifically required for interphase assembly.POM121 is the earliest known protein at pore assembly sites yet how it is directed there is still under investigation.

"We knew both proteins were essential for pore assembly in different ways, but we didn't know how," says co-first author Jessica Talamas, also a postdoctoral fellow in Hetzer's lab. "There was a discrepancy in the literature about POM121, so we were trying to figure out what was going on. It was one of those lightbulb moments, we were looking at the data and realized that POM121 was only required for interphase assembly, and then everything just made sense."

Because these processes are at work in every cell that divides, the study is especially germane to one of the big questions in the field: how the number of nuclear pores is regulated. It's a question with multiple ramifications. Nuclear pore numbers are misregulated in cancer cells, for example, so the findings have applications in cancer research. In addition, because neurons require a large number of nuclear pores, evidence is mounting that defects in nuclear pore assembly are linked to developmental defects in the central nervous system. Assembly defects during development have also been implicated in conditions such as sudden cardiac arrest.

"In establishing differences between the two assembly pathways, the findings have provided the first glimpse of a mechanistic understanding," Hetzer says.

This study was supported by a grant from the National Institutes of Health.

About the Salk Institute for Biological Studies:
The Salk Institute for Biological Studies is one of the world's preeminent basic research institutions, where internationally renowned faculty probe fundamental life science questions in a unique, collaborative, and creative environment. Focused both on discovery and on mentoring future generations of researchers, Salk scientists make groundbreaking contributions to our understanding of cancer, aging, Alzheimer's, diabetes and infectious diseases by studying neuroscience, genetics, cell and plant biology, and related disciplines.

Faculty achievements have been recognized with numerous honors, including Nobel Prizes and memberships in the National Academy of Sciences. Founded in 1960 by polio vaccine pioneer Jonas Salk, M.D., the Institute is an independent nonprofit organization and architectural landmark.

Gina Kirchweger | Newswise Science News
Further information:
http://www.salk.edu

Further reports about: Biological Studies NPC Nobel Prize Nuclear POM121 cardiac arrest cell cycle cell death pores

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>