Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Nuclear hormone receptors, microRNAs form developmental switch

06.04.2009
A particular nuclear hormone receptor called DAF-12 and molecules called microRNAs in the let-7 family form a molecular switch that encourages cells in the larvae of a model worm to shift to a more developed state, said a consortium led by researchers from Baylor College of Medicine (www.bcm.edu) in a report that appears online today in the journal Science (www.sciencemag.org).

As organisms go through the stages of life, hormones coordinate the changes. Nuclear receptors respond to hormones to coordinate stage transitions, but how they do so is not well understood.

GOING FROM STAGE 2 TO STAGE 3

"We knew that nuclear hormone receptors were involved in stage 2 to stage 3 transitions in Caenorhabditis elegans," said Dr. Adam Antebi (http://www.bcm.edu/mcb/?PMID=8411), associate professor in the Huffington Center on Aging at BCM and the report's senior author. "Another class of molecules called microRNAs is also involved in that transition. We hypothesized that maybe if they are involved in the same process, one turns on the other."

That turns out to be the case in C. elegans and may be true in more advanced organisms as well, he said.

A MODEL WORM ENABLES STUDIES

Scientists use the tiny worm called Caenorhabditis elegans to study such processes because it has a simple anatomy and life cycle. C. elegans develops from embryo through four larval stages into adulthood.

Each "stage" has specific programs of cell division, migration, differentiation and death that are crucial to the organism's final development. Particular master regulators in the worm determine each stage transition and are responsible for organizing developmental time.

"Expression of the let-7 family of microRNAs is dependent on the nuclear receptor and its hormone," Antebi said. "We can show in the worm and in cell culture that DAF-12 and its steroid hormone are directly activating these microRNAs."

HOW TRANSITIONS OCCUR

But how does this cause stage transitions? The tiny molecules called microRNAs work as switches to turn off other genes. In this case, the nuclear hormone receptor DAF-12 and its ligand turn on the microRNAs, which then turn off the earlier developmental "programming" of the cell (stage 2), allowing the later programming (stage 3) to take over.

Specifically, the microRNAs dial-back the activity of a protein called "hunchback," which specifies that the cells are in stage 2. That enables stage 3 to start and development to continue.

PROVIDES CANCER INSIGHTS

"We think this could also give insight into cancers," Antebi said, "particularly those that are hormone-dependent, such as breast or prostate cancer. When worm skin cells go from stage 2 to stage 3 they reduce their cell proliferation. When they fail this transition, skin cells overproliferate (grow uncontrollably)."

It is known that both nuclear receptors and microRNAs play a role in human cancers. These studies could help bridge understanding of the effects of the two.

LINKING DEVELOPMENT AND ENVIRONMENT

Antebi also thinks that this system links development to the environment. DAF-12 plays a role in a long-lived quiescent stage called the dauer diapause, which the worms enter in times of starvation and overcrowding.

"In good times, the DAF-12 steroid ligand is made, the microRNAs are turned on, and the worm goes through all stages of development to adult," said Antebi. (A ligand is a molecule that binds to the receptor to form a biologically active complex.)

"In bad times, the ligand is not made and the nuclear receptor (DAF-12) causes the animals to go into the long lived dauer stage, shutting down the microRNAs and the developmental clock," he said.

In this way, environmental signals actually affect the worm's rate of development, and perhaps even its aging, said Antebi.

Dipali Pathak | EurekAlert!
Further information:
http://www.bcm.edu
http://www.sciencemag.org/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>