Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NSF funds research at Illinois on sustainable biofuels infrastructure

28.10.2008
The National Science Foundation announced this month that it is funding a new research effort at the University of Illinois aimed at understanding how – and whether it is possible – to build sustainable infrastructure to support the emerging biofuels industry.

The $2 million grant is one of six NSF awards this year to institutions engaged in engineering infrastructure research. The Illinois team will tackle the engineering, social, environmental and economic constraints of developing and maintaining critical engineering infrastructure so as to sustainably support the emerging bio-economy.

The interdisciplinary nature of the effort is reflected in the breadth of expertise of its researchers: civil and environmental engineering professors Ximing Cai (project leader), Yanfeng Ouyang, Imad Al-Qadi and Murugesu Sivapalan (also in geography); agricultural and biological engineering professor Steven Eckhoff; atmospheric sciences professor Atul Jain; agricultural and consumer economics professor Madhu Khanna; natural resources and environmental science professor Gregory McIsaac; and sociology professor Stephen Gasteyer (formerly at Illinois and now at Michigan State University).

The focus of the research is biofuels infrastructure in Illinois, but the findings will be of interest on a global scale, the researchers said. The Midwest is a prime agricultural region and the manner in which the biofuels industry develops in the Midwest will have implications for the overall food and agricultural picture.

Illinois already leads the nation in research on a promising biofuels crop, a tall perennial grass known as Miscanthus x giganteus. A recent large-scale study from Illinois showed that Miscanthus is more than twice as productive as corn as a biofuels feedstock, and that it may do best on marginal land.

The university also is one of three U.S. institutions selected last year to be part of a $500 million, BP-funded Energy Biosciences Institute, one of the largest biofuels research initiatives in the U.S.

But developing new feedstocks and converting them to biofuels is only part of the equation of building a sustainable biofuels industry, the researchers said.

“We already have an agricultural economy in the Midwest and we have the infrastructure to manage it,” Sivapalan said. “Now the question is whether the existing infrastructure is able to cope with the sudden infusion of bioenergy-related activities, including new crops and a whole lot of new refineries.”

“From a biophysical point of view, we know that we can grow biofuels in this region, at least,” Jain said. “We have plenty of water and nutrients and the land is quite fertile. But the issue is what the environmental implications of growing biofuels are.”

The new biofuels industry will not succeed until and unless all of its potential impacts are fully understood and managed, Cai said. Land use, water use, transportation issues, the economic viability of various approaches and the impact on climate are all important considerations and must be studied in detail, he said.

The researchers already are analyzing how much water and fertilizer different crops require and how different agricultural practices affect water quality and the runoff of pollutants such as nitrates and phosphorous.

Some potential biofuels crops, such as Miscanthus, require less fertilizer than other crops and are efficient at extracting nitrogen from the soil, potentially reducing fertilizer runoff pollution. But Miscanthus may consume more water than corn, which could have impacts on water supplies and aquatic ecosystems.

Transportation is another critical part of the equation, Ouyang said.

“Already our interstate system and the local roads are very congested, especially in urban areas,” he said. “We need to transport the biomass, the feedstocks, to the bio-refineries. This, with the ethanol shipments, would add a lot of truck loads to the roads.”

“The increase in truck loading and traffic will affect the service life of our roads,” said Al-Qadi, who directs the Illinois Center for Transportation. “This must be accounted for as part of a holistic model that considers the economic impact of biofuels.”

Social factors, such as competition over water or the promise of new jobs, also will play a major role in ensuring the success or failure of the biofuels industry, Gasteyer said.

In addition to analyzing the overall sustainability of the biofuels infrastructure system, the researchers will model the dynamic interplay of all these factors to help understand the resiliency of such a complex system. Coupled models from different fields will allow them to test various scenarios, to see which components are most critical and how the whole system is affected by a particular extreme event, such as a drought.

“Will this biofuel economy be viable or not?” Cai said. “Our research will provide an integrated framework for addressing that question from a perspective of engineering infrastructure, as well as environmental and social impacts.”

Editor’s note: To reach Ximing Cai, call: 217-333-4935; e-mail: xmcai@illinois.edu.

To reach Madhu Khanna, call: 217-333-5176 ; email: khanna1@illinois.edu.

NSF contact: Lisa-Joy Zgorski, media officer, Office of the Director, Office of
Legislative and Public Affairs, National Science Foundation, 703-292-8311; 202-285-7396 (cell); email: lisajoy@nsf.gov.

Diana Yates | University of Illinois
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>