Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel type 1 diabetes treatment shown to work on human beta cells transplanted into mice

26.11.2014

Chemical produced in pancreas that prevented and reversed Type 1 diabetes in mice had the same effect on human beta cells transplanted into mice

A chemical produced in the pancreas that prevented and even reversed Type 1 diabetes in mice had the same effect on human beta cells transplanted into mice, new research has found.


A chemical produced in the pancreas that prevented and even reversed Type 1 diabetes in mice had the same effect on human beta cells transplanted into mice, according to a paper in the Dec. issue of Diabetes by Dr. Gerald Prud'homme (left) and Qinghua Wang (right) of the Keenan Research Centre for Biomedical Sciences of St. Michael's Hospital in Toronto.

Credit: Courtesy of St. Michael's Hospital

GABA, or gamma-aminobutryic acid, is an amino acid produced by the same beta cells that make and secrete insulin.

Drs. Gerald Prud'homme and Qinghua Wang of the Keenan Research Centre for Biomedical Sciences of St. Michael's Hospital published a paper in 2011 showing for the first time that GABA injections not only prevented Type 1 diabetes in mice, but even reversed the disease.

A new paper published (Nov. 29) in the December issue of Diabetes shows GABA does the same thing in mice who have been injected with human pancreatic cells.

Type 1 diabetes, formerly known as juvenile diabetes, is characterized by the immune system's destruction of the beta cells in the pancreas. As a result, the body makes little or no insulin. The only conventional treatment for Type 1 diabetes is insulin injection, but insulin is not a cure as it does not prevent or reverse the loss of beta cells.

Drs. Prud'homme and Wang also found that GABA vastly improved the survival rate of pancreatic cells when they were being transplanted into mice. About 70 per cent of pancreatic cells die between the time the organ is harvested and transplanted. The researchers said their finding could lead to future research specifically related to pancreatic transplants.

GABA has been known for decades to be a key neurotransmitter in the brain, a chemical that nerve cells use to communicate with each other, but its role in the pancreas was unknown until the 2011 paper by Drs. Prud'homme and Wang.

GABA and related therapies would have to be tested in human clinical trials, a process that could take several years, the researchers said, noting that many treatments that work in mice do not always translate into effective human therapies.

This study received funding from the Juvenile Diabetes Research Foundation and the Canadian Institutes for Health Research.

About St. Michael's Hospital

St. Michael's Hospital provides compassionate care to all who enter its doors. The hospital also provides outstanding medical education to future health care professionals in more than 23 academic disciplines. Critical care and trauma, heart disease, neurosurgery, diabetes, cancer care, and care of the homeless are among the Hospital's recognized areas of expertise. Through the Keenan Research Centre and the Li Ka Shing International Healthcare Education Centre, which make up the Li Ka Shing Knowledge Institute, research and education at St. Michael's Hospital are recognized and make an impact around the world. Founded in 1892, the hospital is fully affiliated with the University of Toronto.

For more information, or to speak to Drs. Prud'homme or Wang, please contact Leslie Shepherd, Manager of Media Strategy.

Inspired Care. Inspiring Science.

http://www.stmichaelshospital.com

Follow us on Twitter: http://www.twitter.com/stmikeshospital

Leslie Shepherd | EurekAlert!

Further reports about: Diabetes GABA beta beta cells diabetes treatment pancreatic cells therapies type 1 diabetes

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>