Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel treatment strengthens bones in genetic disease

15.08.2014

An enzyme therapy may prevent skeletal abnormalities associated with the genetic disorder neurofibromatosis type-1, Vanderbilt investigators have discovered.

The researchers demonstrated in a mouse model of the disorder that the enzyme asfotase-alpha improves bone growth, mineralization and strength. The findings, reported in the journal Nature Medicine, “suggest that we can make bone stronger and better by injecting this drug, and possibly prevent fractures in patients with neurofibromatosis,” said Florent Elefteriou, Ph.D., director of the Vanderbilt Center for Bone Biology.


Mice missing the gene neurofibromin in bone cells have more non-calcified bone (osteoid), shown in pink, compared to normal mice. In this image, calcified bone is black and bone-forming osteoblasts lining the deposited osteoid are orange-brown.

While he is excited about the results, Elefteriou emphasized the challenge of moving from mouse to human studies. “It’s very difficult to set up a clinical trial in patients with a rare disease; it will have to be an international effort to pool these patients,” he said.

Neurofibromatosis type-1 (NF1) is caused by mutations in the gene for neurofibromin, a protein that regulates cellular signaling pathways. The disorder causes nervous system tumors and skeletal pathologies including scoliosis, bone fragility, fracture and pseudoarthrosis (non-union of the bone following fracture).

Fractures are treated surgically to stabilize the bone and promote healing. Some families opt for amputation, to spare their children the pain of repeated surgeries, Elefteriou said.

“We wondered if there might be a way to prevent the fractures from happening in the first place,” he said.

It was difficult to even propose non-surgical preventive treatments, however, because it was unclear how mutations in neurofibromin cause skeletal pathologies.

To investigate the molecular pathology of NF1, Elefteriou and his colleagues, including first author Jean de la Croix Ndong, Ph.D., have studied a mouse model of the disorder. They noticed in histological stains of bone tissue that the mice had an accumulation of non-mineralized matrix, a condition called hyperosteoidosis.

They have now discovered that hyperosteoidosis in the mice is caused by accumulation of the molecule pyrophosphate, a strong inhibitor of bone mineralization. They found that in the absence of neurofibromin, the expression of certain genes is upregulated. These include genes that enable increased production and transport of pyrophosphate and a gene that prevents calcium and phosphate from depositing on collagen fibers.

In addition, the bone-forming cells fail to differentiate (mature) into “proper tenure-track osteoblasts,” Elefteriou said, which means the cells don’t produce alkaline phosphatase, the enzyme that normally breaks down pyrophosphate.

“That’s a fourth factor preventing mineralization and the formation of new good bone,” he said.

The investigators decided to try clearing the accumulated pyrophosphate by treating the mice with asfotase-alpha, an engineered form of alkaline phosphatase. Asfotase-alpha is currently in clinical trials for hypophosphatasia, another rare genetic disease affecting bone formation.

They found that asfotase-alpha treatment improved bone mass, mineralization and bone mechanical properties in the mouse model of NF1.

“This could be a drug that would prevent fractures and help these kids pass through the early rapid growth period and reach the point where they aren’t as likely to fracture the bone,” Elefteriou said.

To explore whether the molecular pathology of the disease is the same in humans as in the mouse model, the researchers studied pseudoarthrosis tissue biopsies from patients with NF1. They found that the gene that promotes pyrophosphate synthesis is upregulated, suggesting a similar molecular pathology and supporting the notion that asfotase-alpha may be a successful treatment in patients.

There’s much work to be done first, Elefteriou cautions. He notes that although the enzyme therapy corrects the functional defect of pyrophosphate accumulation, it does not correct the failure of osteoblasts to differentiate. This may indicate a need for long-term and combination drug therapy, which the researchers will examine in the mouse model.

They will also continue to collaborate with members of the Children’s Tumor Foundation Bone Consortium to develop clinical trials.

“I think we’ve made great progress in this area,” Elefteriou said. “It’s exciting that instead of fixing the bones after they break, we might have a drug now to prevent the fractures.”

Other Vanderbilt Center for Bone Biology contributors to the studies included Alexander Makowski, Sasidhar Uppuganti, Guillaume Vignaux, Ph.D., Koichiro Ono, Ph.D., Daniel Perrien, Ph.D., and Jeffry Nyman, Ph.D. Additional contributors included Simon Joubert, Ph.D., at Alexion Pharmaceuticals, Serena Baglio, Ph.D., and Donatella Granchi, Ph.D., at Istituto Ortopedico Rizzoli in Bologna, Italy, David Stevenson, M.D., at the University of Utah and Jonathan Rios, Ph.D., at University of Texas Southwestern Medical Center.

This research was supported by a Young Investigator Award from the Children’s Tumor Foundation and by grants from the National Institutes of Health (AR055966, RR027631, TR001105).

Contact:
Leigh MacMillan, (615) 322-4747
leigh.macmillan@vanderbilt.edu

Leigh MacMillan | Eurek Alert!
Further information:
http://news.vanderbilt.edu/2014/08/novel-treatment-strengthens-bones-in-genetic-disease/

Further reports about: Biology Foundation Medicine NF1 Nature Tumor Vanderbilt disorder enzyme genes

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>