Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel treatment strengthens bones in genetic disease

15.08.2014

An enzyme therapy may prevent skeletal abnormalities associated with the genetic disorder neurofibromatosis type-1, Vanderbilt investigators have discovered.

The researchers demonstrated in a mouse model of the disorder that the enzyme asfotase-alpha improves bone growth, mineralization and strength. The findings, reported in the journal Nature Medicine, “suggest that we can make bone stronger and better by injecting this drug, and possibly prevent fractures in patients with neurofibromatosis,” said Florent Elefteriou, Ph.D., director of the Vanderbilt Center for Bone Biology.


Mice missing the gene neurofibromin in bone cells have more non-calcified bone (osteoid), shown in pink, compared to normal mice. In this image, calcified bone is black and bone-forming osteoblasts lining the deposited osteoid are orange-brown.

While he is excited about the results, Elefteriou emphasized the challenge of moving from mouse to human studies. “It’s very difficult to set up a clinical trial in patients with a rare disease; it will have to be an international effort to pool these patients,” he said.

Neurofibromatosis type-1 (NF1) is caused by mutations in the gene for neurofibromin, a protein that regulates cellular signaling pathways. The disorder causes nervous system tumors and skeletal pathologies including scoliosis, bone fragility, fracture and pseudoarthrosis (non-union of the bone following fracture).

Fractures are treated surgically to stabilize the bone and promote healing. Some families opt for amputation, to spare their children the pain of repeated surgeries, Elefteriou said.

“We wondered if there might be a way to prevent the fractures from happening in the first place,” he said.

It was difficult to even propose non-surgical preventive treatments, however, because it was unclear how mutations in neurofibromin cause skeletal pathologies.

To investigate the molecular pathology of NF1, Elefteriou and his colleagues, including first author Jean de la Croix Ndong, Ph.D., have studied a mouse model of the disorder. They noticed in histological stains of bone tissue that the mice had an accumulation of non-mineralized matrix, a condition called hyperosteoidosis.

They have now discovered that hyperosteoidosis in the mice is caused by accumulation of the molecule pyrophosphate, a strong inhibitor of bone mineralization. They found that in the absence of neurofibromin, the expression of certain genes is upregulated. These include genes that enable increased production and transport of pyrophosphate and a gene that prevents calcium and phosphate from depositing on collagen fibers.

In addition, the bone-forming cells fail to differentiate (mature) into “proper tenure-track osteoblasts,” Elefteriou said, which means the cells don’t produce alkaline phosphatase, the enzyme that normally breaks down pyrophosphate.

“That’s a fourth factor preventing mineralization and the formation of new good bone,” he said.

The investigators decided to try clearing the accumulated pyrophosphate by treating the mice with asfotase-alpha, an engineered form of alkaline phosphatase. Asfotase-alpha is currently in clinical trials for hypophosphatasia, another rare genetic disease affecting bone formation.

They found that asfotase-alpha treatment improved bone mass, mineralization and bone mechanical properties in the mouse model of NF1.

“This could be a drug that would prevent fractures and help these kids pass through the early rapid growth period and reach the point where they aren’t as likely to fracture the bone,” Elefteriou said.

To explore whether the molecular pathology of the disease is the same in humans as in the mouse model, the researchers studied pseudoarthrosis tissue biopsies from patients with NF1. They found that the gene that promotes pyrophosphate synthesis is upregulated, suggesting a similar molecular pathology and supporting the notion that asfotase-alpha may be a successful treatment in patients.

There’s much work to be done first, Elefteriou cautions. He notes that although the enzyme therapy corrects the functional defect of pyrophosphate accumulation, it does not correct the failure of osteoblasts to differentiate. This may indicate a need for long-term and combination drug therapy, which the researchers will examine in the mouse model.

They will also continue to collaborate with members of the Children’s Tumor Foundation Bone Consortium to develop clinical trials.

“I think we’ve made great progress in this area,” Elefteriou said. “It’s exciting that instead of fixing the bones after they break, we might have a drug now to prevent the fractures.”

Other Vanderbilt Center for Bone Biology contributors to the studies included Alexander Makowski, Sasidhar Uppuganti, Guillaume Vignaux, Ph.D., Koichiro Ono, Ph.D., Daniel Perrien, Ph.D., and Jeffry Nyman, Ph.D. Additional contributors included Simon Joubert, Ph.D., at Alexion Pharmaceuticals, Serena Baglio, Ph.D., and Donatella Granchi, Ph.D., at Istituto Ortopedico Rizzoli in Bologna, Italy, David Stevenson, M.D., at the University of Utah and Jonathan Rios, Ph.D., at University of Texas Southwestern Medical Center.

This research was supported by a Young Investigator Award from the Children’s Tumor Foundation and by grants from the National Institutes of Health (AR055966, RR027631, TR001105).

Contact:
Leigh MacMillan, (615) 322-4747
leigh.macmillan@vanderbilt.edu

Leigh MacMillan | Eurek Alert!
Further information:
http://news.vanderbilt.edu/2014/08/novel-treatment-strengthens-bones-in-genetic-disease/

Further reports about: Biology Foundation Medicine NF1 Nature Tumor Vanderbilt disorder enzyme genes

More articles from Life Sciences:

nachricht For a chimpanzee, one good turn deserves another
27.06.2017 | Max-Planck-Institut für Mathematik in den Naturwissenschaften (MPIMIS)

nachricht New method to rapidly map the 'social networks' of proteins
27.06.2017 | Salk Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>