Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Protein Fragments May Protect Against Alzheimer's

14.05.2014

TAU researcher's discovery can lead to new drug candidates to treat the neurodegenerative disease

The devastating loss of memory and consciousness in Alzheimer's disease is caused by plaque accumulations and tangles in neurons, which kill brain cells. Alzheimer's research has centered on trying to understand the pathology as well as the potential protective or regenerative properties of brain cells as an avenue for treating the widespread disease.


Now Prof. Illana Gozes, the incumbent of the Lily and Avraham Gildor Chair for the Investigation of Growth Factors and director of the Adams Super Center for Brain Studies at the Sackler Faculty of Medicine and a member of Tel Aviv University's Sagol School of Neuroscience, has discovered novel protein fragments that have proven protective properties for cognitive functioning.

In a study published in the Journal of Alzheimer's Disease, Prof. Gozes examined the protective effects of two newly discovered protein fragments in mice afflicted with Alzheimer's disease-like symptoms. Her findings have the potential to serve as a pipeline for new drug candidates to treat the disease.

NAP time for Alzheimer's

"Several years ago we discovered that NAP, a snippet of a p

rotein essential for brain formation, which later showed efficacy in Phase 2 clinical trials in mild cognitive impairment patients, a precursor to Alzheimer’s," said Prof. Gozes. "Now, we're investigating whether there are other novel NAP-like sequences in other proteins. This is the question that led us to our discovery."

Prof. Gozes' research focused on the microtubule network, a crucial part of cells in our bodies. Microtubules act as a transportation system within nerve cells, carrying essential proteins and enabling cell-to-cell communications. But in neurodegenerative diseases like Alzheimer's, ALS, and Parkinson's, this network breaks down, hindering motor abilities and cognitive function.

"NAP operates through the stabilization of microtubules — tubes within the cell which maintain cellular shape. They serve as 'train tracks' for movement of biological material," said Prof. Gozes. "This is very important to nerve cells, because they have long processes and would otherwise collapse. In Alzheimer's disease, these microtubules break down. The newly discovered protein fragments, just like NAP before them, work to protect microtubules, thereby protecting the cell."

Down the tubes

In her new study, Prof. Gozes and her team looked at the subunit of the microtubule — the tubulin — and the protein TAU (tubulin-associated unit), important for assembly and maintenance of the microtubule. Abnormal TAU proteins form the tangles that contribute to Alzheimer's; increased tangle accumulation is indicative of cognitive deterioration. Prof. Gozes decided to test both the tubulin and the TAU proteins for NAP-like sequences. After confirming NAP-like sequences in both tubulin subunits and in TAU, she tested the fragments in tissue cultures for nerve-cell protecting properties against amyloid peptides, the cause of plaque build up in Alzheimer patients' brains.

"From the tissue culture, we moved to a 10-month-old transgenic mouse model with frontotemporal dementia-like characteristics, which exhibits TAU pathology and cognitive decline," said Prof. Gozes. "We tested one compound — a tubulin fragment — and saw that it protected against cognitive deficits. When we looked at the 'dementia'-afflicted brain, there was a reduction in the NAP parent protein, but upon treatment with the tubulin fragment, the protein was restored to normal levels."

Prof. Gozes and her team also measured the brain-to-body mass ratio, an indicator of brain degeneration, and saw a significant decrease in the mouse model compared to normal mice. Following the introduction of the tubulin fragments, however, the mouse's brain to body ratio returned to normal. "We clearly see here the protective effect of the treatment," said Prof. Gozes. "We witnessed the restorative and protective effects of totally new protein fragments, derived from proteins critical to cell function, in tissue cultures and on animal models."

George Hunka | Eurek Alert!
Further information:
http://www.aftau.org/newsroom?7d56804a-22df-4c4b-a09d-d1cacd9b1135

Further reports about: Alzheimer's Aviv Friends Protect Protein cognitive effects fragments microtubule patients properties protective proteins sequences

More articles from Life Sciences:

nachricht Epigenetic Modification Increases Susceptibility to Obesity and Predicts Fatty Liver Later in Life
23.05.2016 | Deutsches Institut für Ernährungsforschung Potsdam-Rehbrücke

nachricht Lab cell study shows that HOXA5 protein acts as tumor suppressor in breast cancer
20.05.2016 | Johns Hopkins Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

Im Focus: Transparent - Flexible - Printable: Key technologies for tomorrow’s displays

The trend-forward world of display technology relies on innovative materials and novel approaches to steadily advance the visual experience, for example through higher pixel densities, better contrast, larger formats or user-friendler design. Fraunhofer ISC’s newly developed materials for optics and electronics now broaden the application potential of next generation displays. Learn about lower cost-effective wet-chemical printing procedures and the new materials at the Fraunhofer ISC booth # 1021 in North Hall D during the SID International Symposium on Information Display held from 22 to 27 May 2016 at San Francisco’s Moscone Center.

Economical processing

Im Focus: Trojan horses for hospital bugs

Staphylococcus aureus usually is a formidable bacterial pathogen. Sometimes, however, weakened forms are found in the blood of patients. Researchers of the University of Würzburg have now identified one mutation responsible for that phenomenon.

Staphylococcus aureus is a bacterium that is frequently found on the human skin and in the nose where it usually behaves inconspicuously. However, once inside...

Im Focus: Laser pulses: conductors for protons

Using ultrashort laser pulses an international team at the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität Munich has managed to manipulate the positions of atoms in hydrocarbon molecules.

Light can conduct the play of atoms and molecules in the microcosm. Humans manage to interfere with this play. Researchers from the Laboratory of Attosecond...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

Permafrost Conference in Potsdam, Germany

17.05.2016 | Event News

 
Latest News

Autonomous driving: emergence of new billion euro market

23.05.2016 | Information Technology

NEST: building of the future is up and running

23.05.2016 | Architecture and Construction

Researchers find that Earth may be home to 1 trillion species

23.05.2016 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>