Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Protein Fragments May Protect Against Alzheimer's

14.05.2014

TAU researcher's discovery can lead to new drug candidates to treat the neurodegenerative disease

The devastating loss of memory and consciousness in Alzheimer's disease is caused by plaque accumulations and tangles in neurons, which kill brain cells. Alzheimer's research has centered on trying to understand the pathology as well as the potential protective or regenerative properties of brain cells as an avenue for treating the widespread disease.


Now Prof. Illana Gozes, the incumbent of the Lily and Avraham Gildor Chair for the Investigation of Growth Factors and director of the Adams Super Center for Brain Studies at the Sackler Faculty of Medicine and a member of Tel Aviv University's Sagol School of Neuroscience, has discovered novel protein fragments that have proven protective properties for cognitive functioning.

In a study published in the Journal of Alzheimer's Disease, Prof. Gozes examined the protective effects of two newly discovered protein fragments in mice afflicted with Alzheimer's disease-like symptoms. Her findings have the potential to serve as a pipeline for new drug candidates to treat the disease.

NAP time for Alzheimer's

"Several years ago we discovered that NAP, a snippet of a p

rotein essential for brain formation, which later showed efficacy in Phase 2 clinical trials in mild cognitive impairment patients, a precursor to Alzheimer’s," said Prof. Gozes. "Now, we're investigating whether there are other novel NAP-like sequences in other proteins. This is the question that led us to our discovery."

Prof. Gozes' research focused on the microtubule network, a crucial part of cells in our bodies. Microtubules act as a transportation system within nerve cells, carrying essential proteins and enabling cell-to-cell communications. But in neurodegenerative diseases like Alzheimer's, ALS, and Parkinson's, this network breaks down, hindering motor abilities and cognitive function.

"NAP operates through the stabilization of microtubules — tubes within the cell which maintain cellular shape. They serve as 'train tracks' for movement of biological material," said Prof. Gozes. "This is very important to nerve cells, because they have long processes and would otherwise collapse. In Alzheimer's disease, these microtubules break down. The newly discovered protein fragments, just like NAP before them, work to protect microtubules, thereby protecting the cell."

Down the tubes

In her new study, Prof. Gozes and her team looked at the subunit of the microtubule — the tubulin — and the protein TAU (tubulin-associated unit), important for assembly and maintenance of the microtubule. Abnormal TAU proteins form the tangles that contribute to Alzheimer's; increased tangle accumulation is indicative of cognitive deterioration. Prof. Gozes decided to test both the tubulin and the TAU proteins for NAP-like sequences. After confirming NAP-like sequences in both tubulin subunits and in TAU, she tested the fragments in tissue cultures for nerve-cell protecting properties against amyloid peptides, the cause of plaque build up in Alzheimer patients' brains.

"From the tissue culture, we moved to a 10-month-old transgenic mouse model with frontotemporal dementia-like characteristics, which exhibits TAU pathology and cognitive decline," said Prof. Gozes. "We tested one compound — a tubulin fragment — and saw that it protected against cognitive deficits. When we looked at the 'dementia'-afflicted brain, there was a reduction in the NAP parent protein, but upon treatment with the tubulin fragment, the protein was restored to normal levels."

Prof. Gozes and her team also measured the brain-to-body mass ratio, an indicator of brain degeneration, and saw a significant decrease in the mouse model compared to normal mice. Following the introduction of the tubulin fragments, however, the mouse's brain to body ratio returned to normal. "We clearly see here the protective effect of the treatment," said Prof. Gozes. "We witnessed the restorative and protective effects of totally new protein fragments, derived from proteins critical to cell function, in tissue cultures and on animal models."

George Hunka | Eurek Alert!
Further information:
http://www.aftau.org/newsroom?7d56804a-22df-4c4b-a09d-d1cacd9b1135

Further reports about: Alzheimer's Aviv Friends Protect Protein cognitive effects fragments microtubule patients properties protective proteins sequences

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>