Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel Protein Fragments May Protect Against Alzheimer's

14.05.2014

TAU researcher's discovery can lead to new drug candidates to treat the neurodegenerative disease

The devastating loss of memory and consciousness in Alzheimer's disease is caused by plaque accumulations and tangles in neurons, which kill brain cells. Alzheimer's research has centered on trying to understand the pathology as well as the potential protective or regenerative properties of brain cells as an avenue for treating the widespread disease.


Now Prof. Illana Gozes, the incumbent of the Lily and Avraham Gildor Chair for the Investigation of Growth Factors and director of the Adams Super Center for Brain Studies at the Sackler Faculty of Medicine and a member of Tel Aviv University's Sagol School of Neuroscience, has discovered novel protein fragments that have proven protective properties for cognitive functioning.

In a study published in the Journal of Alzheimer's Disease, Prof. Gozes examined the protective effects of two newly discovered protein fragments in mice afflicted with Alzheimer's disease-like symptoms. Her findings have the potential to serve as a pipeline for new drug candidates to treat the disease.

NAP time for Alzheimer's

"Several years ago we discovered that NAP, a snippet of a p

rotein essential for brain formation, which later showed efficacy in Phase 2 clinical trials in mild cognitive impairment patients, a precursor to Alzheimer’s," said Prof. Gozes. "Now, we're investigating whether there are other novel NAP-like sequences in other proteins. This is the question that led us to our discovery."

Prof. Gozes' research focused on the microtubule network, a crucial part of cells in our bodies. Microtubules act as a transportation system within nerve cells, carrying essential proteins and enabling cell-to-cell communications. But in neurodegenerative diseases like Alzheimer's, ALS, and Parkinson's, this network breaks down, hindering motor abilities and cognitive function.

"NAP operates through the stabilization of microtubules — tubes within the cell which maintain cellular shape. They serve as 'train tracks' for movement of biological material," said Prof. Gozes. "This is very important to nerve cells, because they have long processes and would otherwise collapse. In Alzheimer's disease, these microtubules break down. The newly discovered protein fragments, just like NAP before them, work to protect microtubules, thereby protecting the cell."

Down the tubes

In her new study, Prof. Gozes and her team looked at the subunit of the microtubule — the tubulin — and the protein TAU (tubulin-associated unit), important for assembly and maintenance of the microtubule. Abnormal TAU proteins form the tangles that contribute to Alzheimer's; increased tangle accumulation is indicative of cognitive deterioration. Prof. Gozes decided to test both the tubulin and the TAU proteins for NAP-like sequences. After confirming NAP-like sequences in both tubulin subunits and in TAU, she tested the fragments in tissue cultures for nerve-cell protecting properties against amyloid peptides, the cause of plaque build up in Alzheimer patients' brains.

"From the tissue culture, we moved to a 10-month-old transgenic mouse model with frontotemporal dementia-like characteristics, which exhibits TAU pathology and cognitive decline," said Prof. Gozes. "We tested one compound — a tubulin fragment — and saw that it protected against cognitive deficits. When we looked at the 'dementia'-afflicted brain, there was a reduction in the NAP parent protein, but upon treatment with the tubulin fragment, the protein was restored to normal levels."

Prof. Gozes and her team also measured the brain-to-body mass ratio, an indicator of brain degeneration, and saw a significant decrease in the mouse model compared to normal mice. Following the introduction of the tubulin fragments, however, the mouse's brain to body ratio returned to normal. "We clearly see here the protective effect of the treatment," said Prof. Gozes. "We witnessed the restorative and protective effects of totally new protein fragments, derived from proteins critical to cell function, in tissue cultures and on animal models."

George Hunka | Eurek Alert!
Further information:
http://www.aftau.org/newsroom?7d56804a-22df-4c4b-a09d-d1cacd9b1135

Further reports about: Alzheimer's Aviv Friends Protect Protein cognitive effects fragments microtubule patients properties protective proteins sequences

More articles from Life Sciences:

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

nachricht Heating and cooling with light leads to ultrafast DNA diagnostics
31.07.2015 | University of California - Berkeley

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

California 'rain debt' equal to average full year of precipitation

31.07.2015 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>