Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Novel Protein Fragments May Protect Against Alzheimer's


TAU researcher's discovery can lead to new drug candidates to treat the neurodegenerative disease

The devastating loss of memory and consciousness in Alzheimer's disease is caused by plaque accumulations and tangles in neurons, which kill brain cells. Alzheimer's research has centered on trying to understand the pathology as well as the potential protective or regenerative properties of brain cells as an avenue for treating the widespread disease.

Now Prof. Illana Gozes, the incumbent of the Lily and Avraham Gildor Chair for the Investigation of Growth Factors and director of the Adams Super Center for Brain Studies at the Sackler Faculty of Medicine and a member of Tel Aviv University's Sagol School of Neuroscience, has discovered novel protein fragments that have proven protective properties for cognitive functioning.

In a study published in the Journal of Alzheimer's Disease, Prof. Gozes examined the protective effects of two newly discovered protein fragments in mice afflicted with Alzheimer's disease-like symptoms. Her findings have the potential to serve as a pipeline for new drug candidates to treat the disease.

NAP time for Alzheimer's

"Several years ago we discovered that NAP, a snippet of a p

rotein essential for brain formation, which later showed efficacy in Phase 2 clinical trials in mild cognitive impairment patients, a precursor to Alzheimer’s," said Prof. Gozes. "Now, we're investigating whether there are other novel NAP-like sequences in other proteins. This is the question that led us to our discovery."

Prof. Gozes' research focused on the microtubule network, a crucial part of cells in our bodies. Microtubules act as a transportation system within nerve cells, carrying essential proteins and enabling cell-to-cell communications. But in neurodegenerative diseases like Alzheimer's, ALS, and Parkinson's, this network breaks down, hindering motor abilities and cognitive function.

"NAP operates through the stabilization of microtubules — tubes within the cell which maintain cellular shape. They serve as 'train tracks' for movement of biological material," said Prof. Gozes. "This is very important to nerve cells, because they have long processes and would otherwise collapse. In Alzheimer's disease, these microtubules break down. The newly discovered protein fragments, just like NAP before them, work to protect microtubules, thereby protecting the cell."

Down the tubes

In her new study, Prof. Gozes and her team looked at the subunit of the microtubule — the tubulin — and the protein TAU (tubulin-associated unit), important for assembly and maintenance of the microtubule. Abnormal TAU proteins form the tangles that contribute to Alzheimer's; increased tangle accumulation is indicative of cognitive deterioration. Prof. Gozes decided to test both the tubulin and the TAU proteins for NAP-like sequences. After confirming NAP-like sequences in both tubulin subunits and in TAU, she tested the fragments in tissue cultures for nerve-cell protecting properties against amyloid peptides, the cause of plaque build up in Alzheimer patients' brains.

"From the tissue culture, we moved to a 10-month-old transgenic mouse model with frontotemporal dementia-like characteristics, which exhibits TAU pathology and cognitive decline," said Prof. Gozes. "We tested one compound — a tubulin fragment — and saw that it protected against cognitive deficits. When we looked at the 'dementia'-afflicted brain, there was a reduction in the NAP parent protein, but upon treatment with the tubulin fragment, the protein was restored to normal levels."

Prof. Gozes and her team also measured the brain-to-body mass ratio, an indicator of brain degeneration, and saw a significant decrease in the mouse model compared to normal mice. Following the introduction of the tubulin fragments, however, the mouse's brain to body ratio returned to normal. "We clearly see here the protective effect of the treatment," said Prof. Gozes. "We witnessed the restorative and protective effects of totally new protein fragments, derived from proteins critical to cell function, in tissue cultures and on animal models."

George Hunka | Eurek Alert!
Further information:

Further reports about: Alzheimer's Aviv Friends Protect Protein cognitive effects fragments microtubule patients properties protective proteins sequences

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Enormous dome in central Andes driven by huge magma body beneath it

25.10.2016 | Earth Sciences

First time-lapse footage of cell activity during limb regeneration

25.10.2016 | Life Sciences

Deep down fracking wells, microbial communities thrive

25.10.2016 | Earth Sciences

More VideoLinks >>>