Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel oncogenic RET mutation found in small cell lung cancer

25.08.2014

For the first time an oncogenic somatic mutation at amino acid 918 in the RET (rearranged during transfection) protein has been identified in small cell lung cancer (SCLC) tumors and enforced expression of this mutation within SCLC cell lines produced increased intracellular signaling and cell growth.

SCLC is a highly malignant form of lung cancer representing 15% of all lung cancers and is strongly associated with tobacco smoking.

NSCLC, representing 85% of lung cancer, has been extensively examined for genomic alterations and targeted therapies are approved for patients with certain mutations, however SCLC has not been examined with the same rigor and there are no approved targeted therapies for SCLC.

Investigators at Case Western University examined 6 SCLC tumors, 3 each from primary and metastatic tumors, for 238 somatic mutations across 19 oncogenes. RET wild type and mutant protein was then overexpressed in SCLC cell lines and these cell lines were examined for cell signaling, cell growth and responsiveness to two tyrosine kinase inhibitors of RET.

Results reported in the September issue of the Journal of Thoracic Oncology, the official journal of the International Association for the Study of Lung Cancer (IASLC), revealed the RET M918T mutation in a metastatic SCLC tumor and that overexpression of this mutant protein in SCLC cell lines resulted in increased ERK signaling, MYC expression and increased cell proliferation.

Likewise, these cell lines overexpressing the RET protein became sensitive to ponatinib and vandetanib, tyrosine kinase inhibitors of RET. Decreased cell growth was the result of this inhibition of RET.

The authors say that their work “suggests that RET mutations play a potential role in some cases of SCLC as no other activating mutations were identified among the 19 oncogenes assayed in the tumor harboring the RET M918T mutation, potentially making M918T the driver mutation in this tumor”.

However, the authors caution that “the role of oncogenic RET mutations cannot be judged fairly until a larger number of tumors are genomically analyzed, including metastatic tumors”.

Co-author Dr. Shahab Babakoohi is a member of IASLC.

About the IASLC:

The International Association for the Study of Lung Cancer (IASLC) is the only global organization dedicated to the study of lung cancer. Founded in 1974, the association’s membership includes more than 4,000 lung cancer specialists in 80 countries. To learn more about IASLC please visit www.iaslc.org

Murry W. Wynes, PhD

IASLC Special Projects Manager

Murry.Wynes@IASLC.org

(720) 325-2945

Rob Mansheim | Eurek Alert!
Further information:
https://www.iaslc.org/articles/novel-oncogenic-ret-mutation-found-small-cell-lung-cancer

Further reports about: Cancer IASLC NSCLC RET SCLC highly lung metastatic mutations oncogenes role therapies tumors tyrosine

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>