Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel form of experience-dependent plasticity in the adult brain revealed

06.02.2015

Research by a team of scientists from Cologne, Munich and Mainz have shown an unprecedented degree of connectivity reorganization in newly-generated hippocampal neurons in response to experience, suggesting their direct contribution to process complex information in the adult brain.

The hippocampus is an anatomical area of the brain classically involved in memory formation and modulation of emotional behavior. This is also one of the very few regions in the adult brain where resident neural stem cells generate new neurons life-long, thus providing the hippocampal circuitry with an almost unique renewal mechanism important for information processing and mood regulation.

In response to experience and voluntary exercise, the amount of new neurons that incorporate into the hippocampus increases. Now, Dr. Matteo Bergami from CECAD Cologne together with scientists from the LMU Munich and the University Medical Center of the Johannes Gutenberg University in Mainz have joined their efforts to investigate whether experience, rather than merely promoting neurogenesis, also modifies the connectivity of new neurons.

The scientists successfully showed that the pattern of connectivity of new neurons, namely the number and types of inputs received by each new neuron, is not prefigured in the adult brain but can be significantly altered in response to complex environmental conditions. In fact, following environmental enrichment (EE) the innervation by both local hippocampal interneurons and long distance projection cortical neurons was substantially increased.

However, while the inhibitory inputs were largely transient, cortical innervation remained elevated even after ending the exposure to EE. These findings reveal that exposure to complex environmental stimuli as well as their deprivation regulates the way new neurons become incorporated into the preexisting circuitry and thus, their engagement into hippocampal-dependent tasks.

These findings significantly contribute to deepen our understanding of how the brain responds to experience, and how external stimuli are translated into stable changes of neuronal connectivity.

Their results will not only help deciphering how complex learning processes modify the brain´s plasticity, but may also create an experimental basis for investigating the maladaptive changes in brain connectivity associated with neurological and neuropsychiatric disorders such as epilepsy, depression, anxiety, and posttraumatic stress.

The research group’s results represent a crucial step towards realizing the broader vision of CECAD at the University of Cologne, namely to understand the molecular and cellular basis of aging-associated diseases as a mean to develop new effective therapeutic strategies.

Contact:
Dr. Matteo Bergami
CECAD Excellence Cluster at the University of Cologne
Telephone +49 221 478-84250
matteo.bergami@uk-koeln.de

Astrid Bergmeister MBA
Head CECAD PR & Marketing
Telephone + 49 (0) 221-478 84043
astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://www.cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>