Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Novel form of experience-dependent plasticity in the adult brain revealed

06.02.2015

Research by a team of scientists from Cologne, Munich and Mainz have shown an unprecedented degree of connectivity reorganization in newly-generated hippocampal neurons in response to experience, suggesting their direct contribution to process complex information in the adult brain.

The hippocampus is an anatomical area of the brain classically involved in memory formation and modulation of emotional behavior. This is also one of the very few regions in the adult brain where resident neural stem cells generate new neurons life-long, thus providing the hippocampal circuitry with an almost unique renewal mechanism important for information processing and mood regulation.

In response to experience and voluntary exercise, the amount of new neurons that incorporate into the hippocampus increases. Now, Dr. Matteo Bergami from CECAD Cologne together with scientists from the LMU Munich and the University Medical Center of the Johannes Gutenberg University in Mainz have joined their efforts to investigate whether experience, rather than merely promoting neurogenesis, also modifies the connectivity of new neurons.

The scientists successfully showed that the pattern of connectivity of new neurons, namely the number and types of inputs received by each new neuron, is not prefigured in the adult brain but can be significantly altered in response to complex environmental conditions. In fact, following environmental enrichment (EE) the innervation by both local hippocampal interneurons and long distance projection cortical neurons was substantially increased.

However, while the inhibitory inputs were largely transient, cortical innervation remained elevated even after ending the exposure to EE. These findings reveal that exposure to complex environmental stimuli as well as their deprivation regulates the way new neurons become incorporated into the preexisting circuitry and thus, their engagement into hippocampal-dependent tasks.

These findings significantly contribute to deepen our understanding of how the brain responds to experience, and how external stimuli are translated into stable changes of neuronal connectivity.

Their results will not only help deciphering how complex learning processes modify the brain´s plasticity, but may also create an experimental basis for investigating the maladaptive changes in brain connectivity associated with neurological and neuropsychiatric disorders such as epilepsy, depression, anxiety, and posttraumatic stress.

The research group’s results represent a crucial step towards realizing the broader vision of CECAD at the University of Cologne, namely to understand the molecular and cellular basis of aging-associated diseases as a mean to develop new effective therapeutic strategies.

Contact:
Dr. Matteo Bergami
CECAD Excellence Cluster at the University of Cologne
Telephone +49 221 478-84250
matteo.bergami@uk-koeln.de

Astrid Bergmeister MBA
Head CECAD PR & Marketing
Telephone + 49 (0) 221-478 84043
astrid.bergmeister@uk-koeln.de

Weitere Informationen:

http://www.cecad.uni-koeln.de

Astrid Bergmeister | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>