Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Notre Dame study provides insights into the molecular basis of tumor cell behavior

09.11.2009
A new study by a team of researchers led by Crislyn D'Souza-Schorey, associate professor of biological sciences at the University of Notre Dame, sheds light on the molecular basis by which tumor cells modulate their surroundings to favor cancer progression.

The study elucidates mechanisms involved in the release of microvesicles –small membrane enclosed sacs– from tumor cells that facilitate creation of paths of least resistance allowing tumor cells to migrate.

The research offers new insights into how tumor cells invade their surrounding environment and may eventually lead to improved methods for measuring the progression of cancers.

The research paper, which appears this week in an early online edition of the journal Current Biology, identifies a unique population of microvesicles that are enriched in proteases- mediators of tissue degradation. The release of these microvesicles provides a mechanism of tissue breakdown and remodeling at distant sites and is distinct from the better-characterized mechanisms involved in tissue degradation adjacent to the leading edge of tumor cells, D'Souza-Schorey notes.

The new study shows that microvesicle shedding requires localized contraction of the cell's cytoskeleton at sites of microvesicle release and identifies some key regulators involved in the process. One of these critical determinants is the protein ARF6. Understanding the role of the ARF6 protein in cancer progression has been a long standing interest of the D'Souza-Schorey laboratory. Earlier studies from the laboratory using cell and animal tumor models had documented a role of ARF6 in tumor cell invasion.

"Now we now have better insight into the molecular basis by which ARF6 facilitates this process," D'Souza-Schorey said. "Blocking ARF6 activity inhibits microvesicle release and significantly attenuates tumor invasion into surrounding environments. Although our investigations have utilized melanoma and breast tumor cell lines, microvesicle release has been observed in a variety of tumors making this study broadly applicable."

Microvesicles derived from tumor cells also contain other biologically active molecules such as oncogenic receptors and molecules that allow evasion of the immune response. The researchers have now show that specific tumor cell components are selectively targeted to microvesicles, which then function as specialized units that can communicate with or modulate the surrounding environment.

"Studies have shown that once shed, microvesicles can be detected in biological fluids such as blood, urine and ascites and therefore could potentially serve as prognostic and predictive biomarkers for disease progression," D'Souza-Schorey said. "A blood test to monitor the progression of cancer or effectiveness of therapy would be of immense benefit."

Vandhana Chari, a senior postdoctoral researcher in the laboratory is the primary author on the research article. James Clancy, a graduate student and a recipient of Lilly and GLOBES graduate fellowships, and Carolyn Plou, a former undergraduate student researcher, were also part of the research team at Notre Dame involved the study. The research was supported in part by a grant from the National Cancer Institute to D'Souza-Schorey.

Crislyn D'Souza-Schorey | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>