Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Notre Dame study provides insights into the molecular basis of tumor cell behavior

09.11.2009
A new study by a team of researchers led by Crislyn D'Souza-Schorey, associate professor of biological sciences at the University of Notre Dame, sheds light on the molecular basis by which tumor cells modulate their surroundings to favor cancer progression.

The study elucidates mechanisms involved in the release of microvesicles –small membrane enclosed sacs– from tumor cells that facilitate creation of paths of least resistance allowing tumor cells to migrate.

The research offers new insights into how tumor cells invade their surrounding environment and may eventually lead to improved methods for measuring the progression of cancers.

The research paper, which appears this week in an early online edition of the journal Current Biology, identifies a unique population of microvesicles that are enriched in proteases- mediators of tissue degradation. The release of these microvesicles provides a mechanism of tissue breakdown and remodeling at distant sites and is distinct from the better-characterized mechanisms involved in tissue degradation adjacent to the leading edge of tumor cells, D'Souza-Schorey notes.

The new study shows that microvesicle shedding requires localized contraction of the cell's cytoskeleton at sites of microvesicle release and identifies some key regulators involved in the process. One of these critical determinants is the protein ARF6. Understanding the role of the ARF6 protein in cancer progression has been a long standing interest of the D'Souza-Schorey laboratory. Earlier studies from the laboratory using cell and animal tumor models had documented a role of ARF6 in tumor cell invasion.

"Now we now have better insight into the molecular basis by which ARF6 facilitates this process," D'Souza-Schorey said. "Blocking ARF6 activity inhibits microvesicle release and significantly attenuates tumor invasion into surrounding environments. Although our investigations have utilized melanoma and breast tumor cell lines, microvesicle release has been observed in a variety of tumors making this study broadly applicable."

Microvesicles derived from tumor cells also contain other biologically active molecules such as oncogenic receptors and molecules that allow evasion of the immune response. The researchers have now show that specific tumor cell components are selectively targeted to microvesicles, which then function as specialized units that can communicate with or modulate the surrounding environment.

"Studies have shown that once shed, microvesicles can be detected in biological fluids such as blood, urine and ascites and therefore could potentially serve as prognostic and predictive biomarkers for disease progression," D'Souza-Schorey said. "A blood test to monitor the progression of cancer or effectiveness of therapy would be of immense benefit."

Vandhana Chari, a senior postdoctoral researcher in the laboratory is the primary author on the research article. James Clancy, a graduate student and a recipient of Lilly and GLOBES graduate fellowships, and Carolyn Plou, a former undergraduate student researcher, were also part of the research team at Notre Dame involved the study. The research was supported in part by a grant from the National Cancer Institute to D'Souza-Schorey.

Crislyn D'Souza-Schorey | EurekAlert!
Further information:
http://www.nd.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>